Hello, Login
X

Forgot Password?

Join Us

to start. Not a member? Join Today!
LinkedIn Join us on
Investment Management Information
“Bridging the theory & practice of investment management”
Email
Advanced Search →
  • Home
  • Journal
    • About
    • Subscribe to the Journal
      • Subscriptions
      • Library Subscriptions
    • Harry M. Markowitz Award
    • Submit a Paper
      • Article Guidelines
      • Practitioner’s Guidelines
    • Reprints & Permissions
    • Advertising
  • Conferences
    • JOIM Conference Events
    • About
    • Membership
    • Board Members
    • Sponsorship
  • Library Access
  • Contact
  • Help

0 comments / 07/07/2020 / the JOIM / Archives, Articles

Using Machine Learning to Predict Realized Variance

Volume 18, No. 2, 2020
Peter Carr, Liuren Wu and Zhibai Zhang

Volatility index is a portfolio of options and represents market expectation of the underlying security’s future realized volatility/variance. Traditionally the index weighting is based on a variance swap pricing formula. In this paper we propose a new method for building volatility index by formulating a variance prediction problem using machine learning.We test algorithms including Ridge regression, Feed forward Neural Networks and Random Forest on S&P 500 Index option data. By conducting a time series validation we show that the new weighting method can achieve higher predictability to future return variance and require fewer options. It is also shown that the weighting method combining the traditional and the machine learning approaches performs the best.

0 comments… add one
Cancel reply

Leave a Comment

Next Article: Book Review: Smart(er) Investing – How Academic Insights Propel the Savvy Investor

Previous Article: Dynamic Goals-Based Wealth Management Using Reinforcement Learning

JOIM

    Library Access

    Subscribe to the Journal
    Submit a Paper
    Harry M. Markowitz Award
    Editorial Board
    Upcoming Conferences

    Edit Profile

Recent Comments

    JOIM

      About the JOIM
    • Library Access
    • Subscribe to the Journal
    • Submit a Paper
    • Editorial Board
    • Harry M. Markowitz Award
    • Reprints & Permissions
    • Advertising
    • Terms and Conditions

    JOIM Conference Series

    • About
    • Upcoming Conferences
    • Membership
    • Board Members
    • Sponsorship Opportunities
    • Terms & Conditions
    Speaker Reimbursement Policy

    Contact

    Journal Of Investment Management (JOIM)
    3658 Mt. Diablo Blvd., Suite 200
    Lafayette, CA 94549
    www.joim.com

    customerservice @ joim.com
    (925) 299-7800

    Copyright 2019 — Journal Of Investment Management design by SEO Web Designers