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FORECASTING THE DISTRIBUTION
OF OPTION RETURNS

Leandro Gomesa, Roni Israelova and Bryan Kellyb

We propose a method for constructing conditional option return distributions. In our
model, uncertainty about the future option return has two sources: Changes in the position
and shape of the implied volatility surface that shift option values (holding moneyness and
maturity fixed), and changes in the underlying price which alter an option’s location on the
surface and thus its value (holding the surface fixed). We estimate a joint time series model
of the spot price and volatility surface and use this to construct an ex ante characterization
of the option return distribution via bootstrap. Our “ORB” (option return bootstrap)
model accurately forecasts means, variances, and extreme quantiles of S&P 500 index
conditional option return distributions across a wide range of strikes and maturities.
We illustrate the value of our approach for practical economic problems such as risk
management and portfolio choice. We also use the model to illustrate the risk and return
tradeoff throughout the options surface conditional on being in a high-or low-risk state
of the world. Comparing against our less structured but more accurate model predictions
helps identify misspecification of risks and risk pricing in traditional no-arbitrage option
models with stochastic volatility and jumps.

1 Introduction

Equity index options allow investors to take a
position in the aggregate equity claim that is con-
tingent on the particular state of the world being
realized. For example, selling a deep out-of-the-
money put establishes a positive market exposure

aIndependent
bYale University, AQR Capital Management, and NBER

whose payoff only becomes activated in the event
of a severe market downturn. The distribution of
returns to this put encodes rich economic informa-
tion. Dispersion in the put’s returns, measured for
example as standard deviation or extreme quan-
tiles, characterizes the market risks an investor
faces when holding this crash-contingent equity
exposure. Measures of central tendency, such as
the option’s expected return and Sharpe ratio,
describe the reward that investors demand in order
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to bear market exposure in crash states. More
broadly, options markets present an opportunity
to understand the risk and associated reward for
bearing state-contingent exposures to the aggre-
gate equity claim. Because options provide such
a clear partitioning of the aggregate market state
space, measuring their return distributions helps
us understand investors’ preferences regarding
specific market outcomes.

The literature traditionally studies index option
risk and reward through parametric models of
the underlying price process. These models fully
specify the distributional properties of the index
spot price and derive options prices from no-
arbitrage conditions. Among the many benefits of
this approach are strict adherence to arbitrage-free
pricing and the mathematical elegance of closed-
form pricing formulae. At the same time, the
parametric structure that permits these benefits
also limits the specifications that can be tractably
solved and reliably estimated. As we will show,
a leading model calibration from this literature
produces starkly counterfactual predictions for
option return distributions. This reflects misspec-
ifications that distort the models’ description of

risk premia, thus limiting the suitability of tradi-
tional models for inferring investor risk attitudes
from options data.

1.1 Model overview

Our approach to estimating state-contingent risks
and risk compensation from the options data dif-
fers from the traditional approach. We use semi-
parametric time series econometrics to model
option return distributions. We begin with the pro-
posal that uncertainty at time t about the future
option price h periods ahead is describable in
two layers, and illustrated in Figure 1. The first
layer of uncertainty is summarized by the question
“Where will the Black–Scholes implied volatility
(IV) surface be located at time t + h?” Over time
the empirical IV surface experiences frequent ver-
tical shifts associated with the changing level of
market volatility. The shape of the surface also
evolves as changes in the relative pricing of claims
alter surface slope and curvature in the moneyness
and maturity dimensions. If one were to hypo-
thetically hold contract moneyness and maturity
fixed over time, uncertainty about future prices of
all option contracts would be jointly summarized

Figure 1 Illustration of option forecast uncertainty.
Note: Hypothetical implied volatility surface with maturity axis described in days and moneyness axis described as the log distance
between strike price and current spot price in annualized volatility units.
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by uncertainty about the surface’s future
location.

The second layer of uncertainty is captured by the
question “Where on the surface will the contract
migrate to at t + h?” As time passes, the con-
tract’s time-to-maturity coordinate rolls toward
zero deterministically. Its future moneyness coor-
dinate, on the other hand, is unknown, because the
distance between the underlying spot price and
the contract’s strike price depends on the realized
index return. We thus describe the distribution of
future options returns by jointly modeling these
two sources of randomness: the future location
of the surface and the future spot price. Then we
translate the model’s description of spot and sur-
face uncertainty into uncertainty in option return
space.

We implement our model in the following steps.
First, on each day, we convert every contract price
to an equivalent Black–Scholes implied volatility.
Option prices can differ by orders of magnitude
depending on how much time they have before
expiration and whether they are at-the-money
(ATM) or out-of-the-money (OTM). This trans-
formation homogenizes prices to a comparable
annualized volatility scale across strike price and
maturity, which helps achieve stable estimates of
option price dynamics.

Following a common practice in the literature,
we postulate an implied volatility surface where
individual traded contracts are the points in this
surface observable by investors. On the x-axis is
the option’s “moneyness,” which describes the
distance between the current underlying price and
the contract’s strike price. On the y-axis is the con-
tract’s maturity, which represents number of days
before the (European) option may be exercised.
On the z-axis is the contract’s implied volatility.
The second step in our implementation is to build
this IV surface for each day in our sample by
interpolating the IV of traded contracts each day

to a set of fixed moneyness and maturity coordi-
nates. In doing so, we synthesize contracts whose
identity is constant through time. This simplifies
time series analysis of the surface by allowing
us to estimate our model at static grid points. It
also avoids the complicated problem of modeling
dynamics of traded contracts, whose identity is
constantly changing as their moneyness fluctuates
and maturity winds down.

Third, we estimate the model using data on the
underlying index return and the panel of implied
volatilities at constant moneyness/maturity grid
points. We specify the system as a dynamic factor
model whose backbone is a low-dimensional vec-
tor containing the key statistical factors that drive
the IV surface. Surface factors follow a vector
autoregression (VAR), and factor innovations are
described by a multivariate GARCH model. To
describe the full IV surface, common factors are
mapped to all individual points on the grid using
static loadings on contemporaneous factors. Thus,
the entire forecasting machinery of our model is
described by the factor VAR, and the static load-
ings are conduits to distribute VAR forecasts to
all points in the surface.

The last step bootstraps factor model residu-
als to forecast the entire joint distribution of
option prices. The economic questions that we
pursue—regarding risk and risk compensation
of option-based exposures—require not only an
accurate mean forecast but a forecast of the entire
return distribution. Rather than relying on a Gaus-
sian or other parametric distribution for model
innovations, bootstrapping builds up forecast dis-
tributions from the empirical distribution of inno-
vations to non-parametrically match historical
data. Each bootstrap draw of factor innovations
is fed through the VAR, and forecasted factor val-
ues are mapped into forecasts for individual points
on the surface via the estimated static factor load-
ings. This results in a joint forecast distribution
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for the future spot price and option IV’s, thus
summarizing both layers of model uncertainty—
that regarding contracts’ future moneyness and
that of the surface’s imminent location. Lastly, the
resampled outcomes for the IV surface and con-
tract moneynesses are converted to option prices
by evaluating the Black–Scholes formula, boot-
strap draw by bootstrap draw. The final product
is the joint forecast distribution for prices of all
outstanding option contracts as well as the spot
index itself.

1.2 Findings

Our model, which we refer to as the “ORB”
(option return bootstrap) model for brevity, deliv-
ers a highly accurate description of the distribu-
tion of option returns. We forecast return horizons
of one-day up to two-weeks. This choice is driven
by the inherently short lifespan of options—the
vast majority of contracts expire within one year,
and a large mass of these have maturity less than
one month. We construct multi-period forecasts
by iterating one-day forecasts, as opposed to re-
estimating the model at a lower frequency. We
also focus on daily delta-hedged option returns.
The delta hedge purges option returns of mechan-
ical variation associated with exposure to the
underlying spot return. By dispensing with the
comparatively well-understood index return com-
ponent, we are able to focus our analysis more
narrowly on the component of return variation
unique to the options market and arising, for
example, from investor perception and pricing of
variance and tail risk.

When evaluating forecast accuracy, we construct
our predicted values on a purely out-of-sample
basis so that an observation being forecasted never
enters into any aspect of forecast construction.1

We compare our model against two benchmarks.
The first uses unstructured regressions of future
option returns on contract attributes such as mon-
eyness, maturity, and Black–Scholes “Greeks.”

These regressions are motivated by a growing
empirical literature that relates expected option
returns to contract characteristics. The second
benchmark forecasts the option return distribu-
tion by simulating a state-of-the-art no-arbitrage
model with stochastic volatility and price jumps
(which we refer to throughout as the “SVCJ”
model, described in detail in Section 3).

Our first finding is that ORB possesses strong
predictive power for mean option returns. For
each contract day, the ORB model generates
a complete forecast distribution for the future
return. When we regress realized returns on the
model’s out-of-sample mean forecast, we find
a predictive R2 of 1.8% at the two-week hori-
zon and even higher at one-day and one-week
horizons, of 4.1% and 2.9%, respectively. Fore-
casts are equally powerful for short-dated versus
long-dated options, and somewhat more power-
ful for OTM calls versus OTM puts. Overall, the
evidence indicates that ORB provides a vastly
improved description of option risk premia com-
pared to the characteristic and SVCJ benchmarks,
which deliver R2’s of 0.6% at two-week horizon
and only 0.2% the one-day horizon.

Next, we analyze our model’s ability to accu-
rately describe the ex ante volatility of an option
position. We forecast realized absolute option
returns using the average absolute return in the
out-of-sample ORB forecast distribution. At the
one-day horizon our model predicts realized abso-
lute returns with anR2 of 28.2%. The benchmarks
also have success in terms of volatility forecasts,
with an R2 of 24.2% based on a slew of charac-
teristics and 3.9% from the SVCJ model. When
all predictors are included together, the bootstrap
method stands out as the single most informative
predictor of option return volatility.

More than simply describing volatility, our model
successfully forecasts the entire shape of the
future option return distribution. We show that
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ORB is remarkably accurate in predicting all
return quantiles. For example, we find that
model-based forecasts for the 1st percentile of
one-day-ahead option prices exceed the realized
values for 1% of observations. Likewise, the
model’s conditional 99th percentile exceeds the
future realization in 98.7% if the data. Again,
this is on a purely out-of-sample basis. The
corresponding frequencies for quantile forecast
exceedances in the SVCJ model are 30.6% and
81.4%, indicating that the SVCJ model fails to
produce sufficient dispersion option price out-
comes compared to the data. At the two-week
horizon, ORB tail risk forecasts deteriorate only
slightly, with 1st and 99th percentile forecasts
exceeding the realized value for 0.8% and 98.8%
of observations, respectively. At longer horizons,
SVCJ quantile forecasts become more competi-
tive, exceeding realized values 9.5% and 94.9%
of the time, suggesting that traditional affine no-
arbitrage models are somewhat better suited for
describing lower-frequency behavior of option
prices.

Most importantly, our method establishes a new
set of stylized facts about risk premia in options
markets. Our model describes expected return,
volatility, and Sharpe ratio “surfaces,” which
trace out the state-contingent risk and return rela-
tionship throughout the moneyness and maturity
plane. We draw both unconditional surfaces and
surfaces conditional on varying degrees of mar-
ket risk. Based on the predictive accuracy of our
approach, we argue that our model provides a far
more accurate representation of ex ante option
return distributions than available from alternative
models. We show that especially large risk pre-
mia accrue to sellers of short-dated options, and
particularly to sellers of OTM puts. These uncon-
ditional patterns may not be particularly surpris-
ing to those familiar with the empirical options
literature. The great power of our approach is
its ability to describe the conditional risk–return

tradeoff along the options surface, day by day.
We show that the conditional return volatility sur-
face steepens dramatically in turbulent markets,
but conditional returns do not appear to increase.
Because these are conditional moments, they gen-
erally cannot be calculated non-parametrically—
i.e., from averages of historical data alone. As
the conditioning set becomes finer and finer (for
example, conditioning on days with higher and
higher levels of market volatility), historical con-
ditional averages begin to represent realizations
instead of converging to the conditional expecta-
tion. Our model incorporates enough parametric
structure to provide a true ex ante description
of conditional option distributions, and the high
degree of accuracy from our out-of-sample fore-
casts validates that ORB accurately reflects the
true conditional distribution.

While parametric no-arbitrage models can also
provide an ex ante description of the conditional
return distribution, the key question is whether
it is an accurate description. As an example, we
show that some of the basic patterns regarding
the risk–return tradeoff are reversed for the SVCJ
model, even unconditionally. The term structure
of unconditional SVCJ Sharpe ratios is increasing
for puts, while in the data it is decreasing. And
Sharpe ratios throughout the SVCJ surface are
orders of magnitude larger than those in the data.
Understanding these types of discrepancies offers
a valuable insight about how no-arbitrage model
specifications can be improved to better fit the
options market.

Finally, we illustrate the usefulness of ORB fore-
casts for solving practical economic problems
such as risk management and portfolio choice.
Because the model generates the joint conditional
distribution between an option contract return and
the underlying index return, it is simple to con-
struct delta hedges and conditional value-at-risk
estimates from the bootstrap forecast distribution.
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We show, for example, that out-of-sample boot-
strap delta more effectively hedges exposure to
the underlying market return than the standard
Black–Scholes delta or the SVCJ delta. More gen-
erally, the ORB model generates the entire joint
conditional distribution among all outstanding
option contracts at any given point in time. This
means that the model can be used to construct ex
ante optimized portfolios for arbitrary objective
functions. As an example, we construct out-of-
sample, conditionally mean–variance optimized
portfolios that handily outperform simple strate-
gies like naked selling of OTM puts and static
risk reversals (selling OTM puts and buying OTM
calls in a fixed proportion).

1.3 Related literature

The literature on option returns can be divided
into two categories. The first is purely empiri-
cal and typically studies option returns by sorting
options into portfolios on the basis of some char-
acteristic of the option contract or the underlying
asset. It then tracks the subsequent returns of
sorted portfolios and studies unconditional aver-
age returns, volatility, and Sharpe ratios of the
characteristic-sorted option portfolios without a
formal statistical model. Examples of this strand
of literature include Coval and Shumway (2001),
Bakshi and Kapadia (2003), Goyal and Saretto
(2009), Frazzini and Pedersen (2012), Cao and
Han (2013), Boyer and Vorkink (2014), Karakaya
(2014), Vasquez (2016), Israelov and Tummala
(2017), and Büchner and Kelly (2021). Our
approach differs from this literature in several
ways. Most importantly, we develop a formal sta-
tistical model, and in doing so provide a compara-
tively rich description of risk and return in options
markets. It characterizes the complete joint return
distribution among all outstanding contracts and
the spot, as opposed to specific moments of port-
folios’ marginal distributions. From this, one can
immediately calculate a likelihood for any event

in the bootstrap sample to, for example, mea-
sure ex ante crash probabilities, tail dependence,
and associated hedging opportunities among con-
tracts. And our model is specifically designed
to move beyond unconditional characterizations
and instead describe dynamic conditional distri-
butions. The main thrust of our model evalua-
tion shows that ORB forecasts are highly accu-
rate representations of conditional option return
distributions.

The second approach does not focus on option
returns explicitly, but formally models option
prices. This literature posits a distribution for the
underlying spot price and for the stochastic dis-
count factor then derives option pricing formula
by imposing no-arbitrage. The leading models
in this tradition are those with affine stochastic
volatility and jump specifications and are exem-
plified by Heston (1993) and Duffie et al. (2000).
This literature does not study the distribution of
option returns per se, perhaps in large part due
to its analytical intractability.2 The full distribu-
tion of option returns is nonetheless implicit in
an affine model’s physical (P) and risk-neutral
(Q) densities for the underlying asset. Thus these
models can be used to study option returns explic-
itly via simulation, as we do in this paper for the
SVCJ model, though this is not common in the
literature.

While this literature has the great benefit of
imposing economically meaningful no-arbitrage
restrictions among contracts, there are also impor-
tant disadvantages of the affine no-arbitrage
approach. The range of specifications that retain
closed-form option price formula is limited,3 and
their estimation is computationally intensive even
in simple specifications and it is particularly dif-
ficult to identify parameters of the P model.
Perhaps the most challenging problem facing
existing affine no-arbitrage frameworks is a ten-
sion between model complexity and feasibility of
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estimation. Option price behavior is complex—
Q distributions appear to require several factors
in order to describe the rich empirical patterns in
option prices at various strikes and maturities.4

On the other hand, the P distribution of the
underlying index return can be very difficult to
estimate. There is only so much resolution regard-
ing stochastic jump intensities or volatility at
multiple frequencies that one can glean from the
time series of index returns. So, as P specifi-
cations become complex, the corresponding P

model parameters become poorly identified. As a
result, parsimony constraints on the P specifica-
tion tend to bind and models have limited success
in fitting the data.

Our paper is related to the affine no-arbitrage liter-
ature in that we provide a structured description of
joint pricing for all contracts based on a dynamic
model with a small number of underlying fac-
tors. We diverge from this literature by advancing
a statistical model without strictly imposing no-
arbitrage. The key advantage of this approach is
flexibility. We can estimate a variety of richly
parameterized specifications, and do so with tra-
ditional time series models that can be estimated
at trivial computational cost. Furthermore, to the
extent that violations of no-arbitrage exist in the
data (they do),5 our model will naturally be able
to better capture this behavior than a model that
rules out arbitrage a priori.

Lastly, our paper is related to literature that
models the volatility surface and its dynam-
ics directly. This includes, among many others,
Dumas et al. (1998), Aït-Sahalia and Lo (1998),
Cont and Da Fonseca (2002), Fengler et al.
(2003), Gatheral (2004), Daglish et al. (2007),
Fengler et al. (2007), Gatheral and Jacquier
(2014), Carr and Wu (2016), Fengler and Hin
(2015), and Aït-Sahalia et al. (2020a). We dif-
fer from this work by focusing on option return
forecasts as opposed to price or implied volatility

forecasts, and by focusing on forecasts of the
entire joint distribution of returns via bootstrap.

2 Data

Our empirical analysis focuses on the market for
S&P 500 index options. Data are from Option-
Metrics and cover the period from January 1996
through June 2019. This includes contract prices,
underlying index values, and historical dividend
yields and interest rates. We supplement this with
data from the CBOE for the VIX index.

2.1 Implied volatility surface construction

We construct an interpolated implied volatility
surface that is the primary input to our statis-
tical model. We track the surface on a fixed
two-dimensional grid of option moneyness and
maturity coordinates. A contract i is defined by
its maturity date Ti and strike price Ki . The
moneyness of i at time t is defined as:

mi,t = log(Ki/St )

VIXt
√
Ti − t

, (1)

where St denotes the underlying spot price and
VIXt level of the VIX index. This definition of
moneyness describes the log distance between the
prevailing spot price and the contract strike price
in annualized volatility units. The literature often
defines moneyness using contract-specific Black–
Scholes implied volatility as the unit of volatility.
We instead use VIX volatility units because it is
convenient in our forecasting procedure to have
moneyness of all contracts on a common volatility
scale.

The grid points are set at 30, 60, 90, 120, 150,
180, 270, and 365 days to maturity, and money-
ness values from −2 to 1 at increments of 0.25.
When we interpolate to these points, we consider
options with moneyness as low as −2.5 and as
high as 1.5, and maturities of up to 450 days.
This range contains the great majority of liquid
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contracts, spanning 90% of contract volume in
the full sample, and 95% of the volume in the
early (pre-2000) sample.

On each day, we construct synthetic IV for each
grid point by interpolating traded contracts with a
thin plate spline.6 We focus on ATM and OTM
contracts which are typically more liquid than
ITM options, and perform separate interpolations
for puts and calls due to frequent disagreement in
their IV’s at the same strike. Moneyness of the put
surface ranges from −2 to 0.5, and from −0.5 to
1 for calls.

3 Model

Our model is built on the idea that uncertainty
about future option returns is describable in two
layers: Uncertainty about the position and shape
of the future IV surface, and uncertainty about
the future moneyness of contracts. We build a
low-dimensional vector autoregression for the
common factors in our system, which is the main
forecasting component of our model. Then, we
use static factor loadings to map variation in the
common factors to all points in the IV surface.
Lastly, we convert variation at each point in the
surface into a forecast for the distribution of future
option prices.

3.1 Specification

Let Xt denote the vector of L common factors.
The first two elements of Xt are the underlying
S&P 500 index return and the log of the VIX
index. Uncertainty about future moneyness of all
contracts is captured by the distribution of these
two factors. When the S&P 500 index or the VIX
moves, all contracts experience correlated shifts
in their scaled distance between strike and spot,
mi,t .

The remaining elements of Xt describe common
variation in the IV surface. IV for contracts at all

moneynesses and maturities are strongly corre-
lated with VIX. Thus, having VIX as the second
element of Xt allows it to serve a dual role as
the level factor for the IV surface. We supple-
ment this with additional principal components
of the IV surface. We build these additional fac-
tors by first orthogonalizing the time series log
IV at each grid point against log VIX, and then
extracting PCs from the orthogonalized log IV
surface. These PCs tend to describe the changing
slope and curvature of the surface in the mon-
eyness and maturity dimensions.7 We vary the
number of PCs used across model specifications.
We denote the general vector of estimated compo-
nents as PCt , and thus the full vector of common
factors is Xt = [rt , logVIXt ,PC′

t ]′.
The time series model for factors is a VAR(1):

Xt = μ+ ρXt−1 +�t−1εt . (2)

The vector of factor intercepts,μ, and autoregres-
sive coefficient matrix, ρ, are static. Factor inno-
vations are determined by an i.i.d. shock εt whose
distribution is unspecified but that we assume has
mean zero, variance one, and constant (poten-
tially non-zero) correlations. Innovations have
dynamic conditional covariances via�t−1, which
is a diagonal matrix of GARCH(1,1) volatilities.

The system’s dynamics are extended from the
factors to all points in the surface via static fac-
tor loadings. Denoting a given set of moneyness
and maturity coordinates as (m, τ), the surface’s
factor structure specification is

log IV (m, τ)t = β(m, τ)[1, X′
t ]′ + u(m, τ)t .

(3)

It is important that we specify the IV surface
model and its factors in logs to avoid the pos-
sibility of negative variances at all points in
the surface. The first element of β contains the
grid-point specific intercept and the remaining
elements describe contemporaneous regression
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sensitivities of gridpoint log IV to the common
factors. Finally, we allow for residual serial
correlation at each grid point:

u(m, τ)t = ψ(m, τ)′[1, u(m, τ)t−1]
+ φ(m, τ)t−1η(m, τ)t . (4)

The residual innovation at each gridpoint,
η(m, τ)t , is an i.i.d. shock with mean zero, vari-
ance one, and constant correlation across grid
points. Residuals are subject to GARCH(1,1)
volatility through φ(m, τ)t−1.

3.2 Estimation and out-of-sample
forecast construction

Our analysis focuses on out-of-sample forecasts.
Let T = 5,912 denote the number of daily obser-
vations in the full data set from 1/1996–6/2019,
and use an initial estimation window of 1,000 days
and allow the estimation sample to expand over
time. We construct one-step-ahead forecasts for
each observation t + 1 > 1, 000 as follows:

Step 1: Estimate using historical data. Define
the estimation sample as the set of daily obser-
vations ending at t . In particular, the estimated
model does not use in any way the t + 1 contract
observations to be forecasted.

Next, estimate static model parameters μ, ρ, and
β, conditional volatilities �t and φt , and the
t × (L + N) matrix of historical model residu-
als E ≡ {[ε′

τ , η
′
τ ]}tτ=1. Estimate the factor VAR

coefficients μ and ρ via OLS regression and then
estimate �t from the OLS residuals. Similarly,
estimate the log IV factor model from a time series
OLS regression of log IV at each gridpoint onto
the factors, then estimate residual serial correla-
tion and GARCH from the regression residuals.8

Finally, recover estimates of factor and sur-
face innovation shocks as ε̂t and η̂t by scaling

regression residuals with their conditional volatil-
ity estimates. In what follows, hat superscripts
indicate that a parameter, conditional variance, or
residual is estimated with data ending at time t .

Step 3: Construct the option price forecast dis-
tribution via bootstrap. For each bootstrap draw
b = 1, . . . , 5000, randomly sample one row from
Ê maintaining its column ordering, and denote
the sampled residuals by ε̂bt+1 and η̂bt+1. Feed the
bootstrap draws of ε̂bt+1 through the estimated
VAR in Equation (2) to construct the forecast
distribution of one-period-ahead factors:

X̂bt+1 = μ̂+ ρ̂Xt + �̂t ε̂
b
t+1,

b = 1, . . . , 5000.

This bootstrap sample includes the forecast dis-
tribution for the underlying index value at t + 1
(via the index return, which is the first element
of X) and for the VIX index at t + 1 (the expo-
nentiated second element of X). Together, these
imply a forecast for the t + 1 surface coordinates
of each contract. In particular, for a contract i that
matures at Ti with strike priceKi , its distribution
of surface coordinate forecasts is given by

τi,t+1 = Ti − (t + 1) and

m̂bi,t+1 = log
(
Ki/St exp(r̂bt+1)

)
ˆVIX
b

t+1
√
τi,t+1

,

b = 1, . . . , 5000.

Next, construct the distribution of forecasted
implied volatilities for each contract i. To do
so, feed the bootstrapped factors (X̂bt+1), sur-
face residuals (η̂bt+1), and moneyness coordinates
(m̂bi,t+1) through the estimated surface factor
model of Equations (3) and (4). Note that the
model in Equation (3) is only defined on a fixed
set of grid points, while the contract’s fore-
casted coordinates (τi,t+1, m̂

b
i,t+1) will generally

lie between grid points. Therefore, interpolate
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the model estimates β̂, ψ̂ , and φ̂t to each boot-
strapped coordinate, and denote the interpolated
values as β̂(m̂bi,t+1, τi,t+1), ψ̂(m̂bi,t+1, τi,t+1), and

φ̂(m̂bi,t+1, τi,t+1)
b
t . Use these in conjunction with

the bootstrap draws to produce implied volatility
forecasts for individual contracts:

ˆIV bi,t+1 = exp{β̂(m̂bi,t+1, τi,t+1)

× [1, X̂b′
t+1]′

+ û(m̂bi,t+1, τi,t+1)
b
t+1}. (5)

Finally, convert the implied volatility bootstrap
forecast distribution to the distribution of fore-
casted option prices by evaluating the Black–
Scholes formula at each individual bootstrap draw

of { ˆIV bi,t+1}5000
b=1 .

The result of this procedure is a conditional one-
step-ahead forecast for the price distribution of
an individual contract, {P̂ bi,t+1}5000

b=1 . From the
price distribution, the forecasted distribution of
option returns is immediate. Importantly, because
the bootstrap procedure draws factor innovations
and surface errors row-wise (i.e., preserving their
cross-sectional dependence), this procedure in
fact forecasts the entire joint distribution of prices
for option contracts across all outstanding strikes
and maturities. Furthermore, it provides the joint
distribution of these contract prices with any
function of the future factor vector, such as the
future index spot price, the VIX, and principal
components of the IV surface.

3.2.1 Multi-period forecasts

Our bootstrap procedure can be extended to form
a J -step-ahead option price forecast with the
following modifications. In Step 2, instead of
drawing a single row of Ê , each bootstrap draw b

will randomly sample J rows of Ê to construct the

sequence [ε̂b′
t+1, η̂

b′
t+1], . . . , [ε̂b

′
t+J , η̂

b′
t+J ]. From

this draw b, the J -step factor vector forecast is

X̂bt+J =
⎛
⎝ J∑
j=1

ρ̂j−1

⎞
⎠ μ̂+ ρ̂JXt

+
J∑
j=1

ρ̂J−j �̂t+j−1|t ε̂bt+j ,

where the notation �̂t+j−1|t emphasizes that
the conditional information set for the volatil-
ity forecast is fixed at t . In addition to pro-
ducing factor forecasts, this also delivers con-
tracts’ moneyness forecasts (m̂bi,t+J ). Similarly,
û(m̂bi,t+J , τi,t+J )

b
t+J is constructed from the

sequence of η̂ draws by iterating forecasts from
Equation (4) using parameters interpolated to
gridpoint (m̂bi,t+J , τi,t+J ). Finally, the multi-step
IV forecast is

ˆIV bi,t+J = exp{β̂(m̂bi,t+J , τi,t+J )[1, X̂b
′
t+J ]′

+ û(m̂bi,t+J , τi,t+J )
b
t+J },

from which the J -step-ahead price forecast is
immediately obtained by evaluating the Black–
Scholes formula at this value.

3.3 Benchmark: SVCJ

Throughout our analysis we provide forecasts
from a traditional no-arbitrage model as a bench-
mark for comparison. We focus on the spec-
ification studied by Broadie et al. (2007) that
incorporates jumps in the underlying index spot
price and in the stochastic volatility, which
we refer to throughout as an “SVCJ” model.
We focus on this specification and closely fol-
low their estimation procedure for the following
reasons.

Journal Of Investment Management Third Quarter 2024

Not for Distribtuion



Forecasting The Distribution of Option Returns 91

Broadie et al. (2007), along with the related paper
of Broadie et al. (2009), emphasize estimating the
physical distribution of the underlying index, and
successful option return forecasts fundamentally
rely on accurate estimates of physical distribu-
tions. Yet, an important strand of the no-arbitrage
options pricing literature (e.g. Andersen et al.,
2015) does not specify the physical distribution of
the underlying at all and instead focuses solely on
estimating the risk-neutral model representation.
In doing so, this literature excels at delivering
accurate descriptive models with tiny option pric-
ing errors. However, any model that abstracts
from physical dynamics is unusable for the kinds
of forecast applications that are the focus of our
paper. The emphasis that Broadie et al. (2007)
place on estimating the physical distribution make
it an ideal benchmark for the behavior of forecast
distributions in no-arbitrage models.

Details of the Broadie et al. (2007) model and
calibration are described in Appendix A. We con-
struct SVCJ conditional forecast distributions for
option returns by simulating 5,000 future realiza-
tions for the index price and index volatility based
on the calibrated physical model parameters esti-
mated by MCMC as in Eraker et al. (2003), then
convert these simulated values to option prices by
evaluating the model’s pricing formula based on
the calibrated risk-neutral parameters estimated
as in Broadie et al. (2007).

4 Empirical Results

In this section we describe the empirical perfor-
mance of our model. We defer our discussion of
estimated model parameters and surface factors
to Appendix C, and instead begin immediately
describing behavior of the model’s option price
and return forecasts. We focus on the model spec-
ification with five surface factors given by the log
VIX plus two additional PCs each from the call
and put surfaces (we discuss model specification
choice in Appendix D).

4.1 Case study

To provide a tangible introduction to the mechan-
ics of the model, we describe how forecasts are
generated for a handful of contracts on a sin-
gle day. This case study takes the perspective
of the last day in our sample, August 28, 2015,
and considers forecasting one-day-ahead prices
and returns using the ORB model with five sur-
face factors (factor construction is discussed in
Appendix D).

On August 28, 2015, the S&P 500 index closed
at 1989. The VIX index stood at 26, above its
1996–2015 sample mean of 21, amid a turbulent
summer market whose volatility was driven in
large part by a correction in the Chinese market of
40% between June and August. The top panel of
Figure 2 describes one-day-ahead bootstrap fore-
casts for the price of an OTM put (K = 1930,
m = −0.5) and OTM call (K = 2050, m = 0.5)
with 21 days to maturity. The solid blue line plots
the option payoff at maturity as a function of the
underlying price on the horizontal axis. Red stars
show the prevailing price of each contract.

First, in Panel A, we examine how price forecasts
would behave if the only thing to change were the
underlying spot price. The green diamonds show
the distribution of future option prices when we
bootstrap the underlying index return but hold the
implied volatility surface fixed at its closing posi-
tion on August 28. This distribution embodies the
portion of the forecast distribution arising only
from uncertainty about the contracts’ future mon-
eyness. This partial forecast traces out a curve
relating future spot price to option price, ceteris
paribus.

Similarly, in Panel B, green diamonds plot the
forecasted price distribution holding the spot price
fixed and only bootstrapping the future IV sur-
face. This distribution embodies the portion of
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the forecast distribution arising only from uncer-
tainty about the future position of the IV surface.
This shows a smooth curve for the partial relation-
ship between future IV to option prices, ceteris
paribus.

Next, by bootstrapping both the surface factors
and the spot price, the scatters of blue points
in Panels A and B show the forecasted price
distribution when uncertainty about both money-
ness and the IV surface is accounted for. Surface

Panel A: Option price vs. Spot price

Panel B: Option price vs. Implied volatility

Figure 2 Case study: 21-day options on August 28, 2015.
Note: Out-of-sample forecast distributions for one-day-ahead prices and returns from the ORB model with five surface factors. Panel
A shows scatter plots of bootstrap option prices versus bootstrap spot prices. Panel B scatters bootstrap option prices versus bootstrap
IV. Panel C shows histograms and summary statistics of annualized delta-hedged percentage returns to selling options. Panel D shows a
scatter of delta-hedged put returns versus call returns and the histogram and annualized summary statistics of returns to a delta-hedged
risk reversal.
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Panel C: Delta-hedged return Histograms

Panel D: Joint put and call distribution (Delta-hedged)

Figure 2 (Continued)

uncertainty contributes a large amount of uncer-
tainty. For example in Panel A, even if the spot
price were to remain constant the distribution
of price forecasts for the OTM put range from
$10 to $35. More specifically, the cloud of blue
points describes the conditional joint distribution
of future spot prices and prices of the option
contract. As such, it immediately delivers a boot-
strap counterpart to the Black–Scholes delta. The
bootstrap delta is simply calculated as the slope
coefficient from a regression of bootstrapped put

price outcomes on the bootstrapped spot prices
(the fitted regression line is shown in black, and
the Black–Scholes delta is represented by the
slope of the gray dashed line). The shape of the
blue cloud also highlights important joint dynam-
ics in the index prices and the surface. In states
where the index falls, forecasted put and call
prices are especially high relative to forecasts with
a static surface (in green), reflecting the negative
correlation between index returns and volatility.
Similarly surface IVs and hence option prices are
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comparatively low when the index rises. As an
implication, the slope of the black line in the
put figure is steeper than a regression line fit-
ted to the green curve would be, recommending
a more aggressive delta hedge than that from
Black–Scholes. The opposite is true for calls: The
negative spot/volatility correlation dampens the
bootstrap delta relative to Black–Scholes.

In turn, the bootstrap delta together with the
simulated outcomes allows us to recover the
conditional distribution of delta-hedged option
returns. The ability to easily generate distributions
of delta-hedged option returns is a boon for under-
standing subtler pricing behaviors of the option
market by stripping out the large component of
option returns that is mechanically correlated
with the underlying index return. Panel C of
Figure 2 shows histograms and annualized sum-
mary statistics for the conditional delta-hedged
return distribution facing a seller of each con-
tract. The bootstrap distribution highlights large

deviations from normality in option return dis-
tributions. Sellers of these OTM contracts face
extreme downside risks in the form of negative
skewness (−3.5 for the put, −2.1 for the call) and
excess kurtosis (27.5 and 10.3 for the put and call,
respectively).

The right and left plots in Panel C are in fact
closely related. They are both produced from the
same set of bootstrap draws—that is, together
they comprise a joint distribution of returns on
two contracts. In the left plot of Panel D, we
show this joint distribution explicitly by scattering
outcomes for the delta-hedged put return against
the corresponding draws for the call return. This
scatter begs the question of whether the two
contracts can be advantageously combined in
a portfolio. A common option trading strategy
designed to harvest the relative richness in put
prices relative to calls is a risk reversal.9 This
strategy sells an OTM put option and hedges
with a long OTM call position. But what is the

Figure 3 Case study: Options on August 28, 2015.
Note: Out-of-sample forecast distributions for one-day-ahead prices from the ORB model with five surface factors. The figure shows
scatter plots of bootstrap option prices versus bootstrap spot prices for a variety of strikes and maturities.

Journal Of Investment Management Third Quarter 2024

Not for Distribtuion



Forecasting The Distribution of Option Returns 95

risk-minimizing hedge ratio? In the model, a con-
ditionally minimum variance hedge is constructed
by regressing bootstrapped put returns on the cor-
responding bootstrapped call returns, represented
by the black line. The slope of this line is the ex
ante optimal hedge ratio, which in this example
is equal to 1.15.10 The bootstrapped return distri-
bution for the risk reversal with a bootstrap hedge
ratio is shown in the right figure. Compared to
the individual put and call returns, the risk rever-
sal has attractive ex ante expected performance. It
earns nearly the same expected returns as selling
the put outright, but with half the volatility, and
less kurtosis and negative skewness.

While this risk reversal example illustrates the
potential usefulness of bootstrap option forecasts
for problems in risk management and portfolio
choice, it understates the full richness of the con-
ditional distribution embodied ORB. Figure 3
shows the distribution of eight contracts against
the underlying, ranging from very short dated
(21 days) to long dated (294 days), and from
deep OTM puts (m = −1.7) to deep OTM calls
(m = 1.5). On August 28, 2015, over 750 dif-
ferent S&P 500 index options were trading. The
bootstrap delivers the conditional joint distribu-
tion of all of these, in addition to their joint
distribution with the underlying return, VIX, and
other surface factors.

4.2 Forecast evaluation

The previous section described the behavior of
bootstrap forecast distributions for a handful of
contracts on one particular day. In this section, we
conduct a large-scale evaluation of the accuracy
of forecast distributions across all contracts on all
days.

4.2.1 Out-of-sample forecast construction

To avoid any concern that forecast accuracy is
due to in-sample overfit or look-ahead bias, we

evaluate our model on a purely out-of-sample
basis. We do this using a recursive estimation pro-
cedure which ensures that any observation being
forecasts is strictly excluded from the estimation
sample used to construct the forecast.

In particular, consider a forecast of an option
price or return at t + h given information as of
date t . The h-period ahead out-of-sample fore-
cast estimates the model only using observations
in the estimation window 1, . . . , t , thus mimick-
ing the information set that a market participant
would have had access to in real time. From the
backward-looking window we produce estimates
of static model parameters (μ, ρ, etc.), condi-
tional variances (�t, φt ), and the pool of model
residuals (E) from which bootstrap samples are
drawn. Then, we use these backward-looking
estimates to construct forecasts beyond period t .

We construct h-period ahead out-of-sample fore-
casts recursively. Our initial estimation sample
includes the first 1,000 days of data (January
1996 through mid-December 1999). Estimates
based on observations 1 through 1,000 produce
forecasts for option prices and returns at date
1,000 + h. Next, we expand the estimation win-
dow by one-day to include 1 through 1,001,
and use these observations to construct forecasts
for date 1,001 + h. We iterate this procedure
until we have exhausted the full 5,912 days in
our sample. As we expand the estimation win-
dow, model estimates become more precise and
the pool of residuals from which we bootstrap
becomes larger.

4.3 Mean forecasts

We first assess the accuracy of our model’s con-
ditional forecast distributions by evaluating the
accuracy of mean return forecasts. Throughout
the paper we define returns from the perspective
of an investor selling the option that dynami-
cally delta-hedges via Black–Scholes each day.
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In particular, the h-period excess return to selling
contract i at t + h is

ri,t+h = 1

St

⎛
⎝Pi,t − Pi,t+h +

h∑
j=1


BS,i,t+j−1

× [St+j − St+j−1] + rf,h,tPi,t

⎞
⎠

where 
BS denotes the standard Black–Scholes
delta and rf,h,t is the h-period risk-free rate. This
return is defined relative to the basis of the initial
price of the underlying, rather than with respect
to the initial contract price. We do this in order
to avoid extreme behavior of returns for deep
OTM contracts that have very small initial values.
This helps our analyses by ensuring that results
throughout the paper are not driven by the return
variation of contracts with values near zero. And
note that the choice of basis drops out of our
Sharpe ratio computations throughout.

For each contract i on date t we have a the full
bootstrap conditional distribution for the con-
tract’s price (and thus its return) at t + 1. We
calculate the bootstrap conditional mean return
forecast as Êt [ri,t+1] ≡ 1

B

∑
b r̂

b
i,t+1, which is

a pure out-of-sample forecast constructed using
only data through date t . Then, we regress
the realized return ri,t+1 on the bootstrap con-
ditional mean pooling all observations in our
sample:

ri,t+1 = c0 + c1Êt [ri,t+1] + ei,t+1. (6)

Equation (6) is a Mincer and Zarnowitz (1969)
regression and is a commonly used forecast eval-
uation tool. The ideal forecast will produce an
intercept of zero, a slope of one, and unfore-
castable residuals. More broadly, the magnitudes
and significance of c0 and c1 are informative

about predictive content and biasedness of the
model-based mean forecast.

We report conditional mean forecasting results
in Table 1. Column 1 establishes an agnostic
baseline for the extent of predictive information
in commonly studied contract-level conditioning
variables with a linear model, and is motivated by
the characteristics frequently used to form port-
folios in the options literature. In particular, we
regress ri,t+1 on time t values of contract mon-
eyness, time-to-maturity, Black–Scholes implied
volatility, and Black–Scholes gamma, vega, and
theta. We also include the interaction of each char-
acteristic with an indicator for whether the option
is a put to allow for differences in the associa-
tion between contract characteristics and returns
for puts versus calls.11 The explanatory power
in this regression is small (R2 = 0.16%), and
none of the regressors are significant at the 5%
level (all standard errors in Table 1 are clustered
by day).

Column 2 reports the Mincer–Zarnowitz regres-
sion for forecasts from the bootstrap model. The
R2 of the regression is 4.11%, which is remark-
able, given that forecasts are made out-of-sample
and that the return horizon is one-day. The slope
coefficient is 0.44 with a t-statistic of 10.8, indi-
cating that the model has strong and highly
significant predictive content in a mean forecast-
ing sense. While the slope is statistically far from
zero, it is also statistically far from one, and
this attenuated slope indicates forecast imper-
fection likely due to a combination of model
misspecification and noisy parameter estimates.

For comparison, we report Mincer–Zarnowitz
results for the SVCJ model in column 3. The slope
coefficient is 0.007 (t = 2.7), indicating quantita-
tively weak but statistically significant predictive
content in SVCJ mean forecasts. SVCJ predictive
power is also weak when viewed in terms of R2
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(0.19%). When the bootstrap mean, SVCJ mean,
and contract characteristics are included jointly in
the regression of column 4, we essentially recover
the regression of column 2, indicating that the
bootstrap mean subsumes the forecasting content
of all predictors considered.

Columns 5–8 repeat these regressions with date
fixed effects. This more closely mimics the
characteristic-based sorting approaches used in
much of the literature. This regression is useful
for understanding whether a predictor is useful for
explaining cross-section variation in returns, even

Table 1 Mean return forecasting regressions.

1 2 3 4 5 6 7 8

ORB 0.436 0.451 0.432 0.442
(10.8) (10.8) (18.8) (18.7)

SVCJ 0.007 0.001 0.006 0.000
(2.7) (0.7) (4.5) (0.0)

Money 0.003 0.006 0.000 0.001
(0.7) (1.5) (0.1) (0.3)

TTM 0.000 0.000 0.000 0.000
(0.6) (0.4) (2.7) (0.5)

Gamma 0.009 2.714 −1.879 1.556
(0.0) (3.1) (3.1) (2.2)

Vega 0.000 0.000 0.000 0.000
(0.8) (2.9) (1.5) (1.2)

Theta 0.000 0.000 0.000 0.000
(0.6) (0.2) (0.1) (0.1)

IV 0.055 0.099 0.314 0.183
(1.0) (1.8) (5.8) (3.3)

Money*Put −0.003 −0.012 0.010 −0.003
(0.6) (2.3) (2.3) (0.8)

TTM*Put 0.000 0.000 0.000 0.000
(1.7) (2.5) (2.3) (2.0)

Gamma*Put 0.300 0.221 2.086 1.288
(0.3) (0.2) (2.6) (1.4)

Vega*Put 0.000 0.000 0.000 0.000
(1.5) (2.9) (0.5) (1.2)

Theta*Put 0.000 0.000 0.000 0.000
(1.4) (2.0) (2.1) (1.6)

IV*Put −0.032 −0.074 −0.126 −0.109
(1.0) (2.2) (4.6) (3.9)

Date FE No No No No Yes Yes Yes Yes
R2 (%) 0.156 4.110 0.189 4.418 0.661 8.578 0.195 9.137
N (10000s) 142.8 142.8 142.8 142.8 142.8 142.8 142.8 142.8

Note: Pooled forecasting regressions for delta-hedged returns to selling option contracts. Characteristic
coefficients are reported multiplied by 100. ORB and SVCJ predictors are means of the models’ simulated
return distribution for each contract-day. Standard errors are clustered by day.
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if the predictor is not especially useful in a time
series sense. The R2 we report for fixed effects
regressions is an incremental R2. It describes
the fraction of return variation explained by the
regressors after removing the explained varia-
tion from fixed effects. Indeed, characteristics
are comparatively effective in explaining cross-
section variation in returns, with an R2 of 0.66%.
But the main conclusion from the first four
columns is unchanged—the bootstrap forecast
essentially subsumes the predictive information
among all of the predictors we consider.

Whereas Table 1 pools all contract-days, Figure 4
describes the accuracy of conditional mean fore-
casts from the bootstrap model in subsamples.
We double sort observations into bins with mon-
eyness ranging from −2 to 1 in increments of
0.5 and maturity of 30–60, 61–90, 91–180, and
181–365 days. Then, within each of the 24
resulting moneyness/maturity bins, we estimate
regression (6) (with no date fixed effects). The
left panel of Figure 4 shows the estimated slope
coefficients and the right panel shows regres-
sion R2s. Slopes range from 0.25 to 0.79 and
are highly significant with all p-values below

0.0001. The corresponding bin R2s range from
1.76% to 8.92%. Bootstrap mean forecasts are
thus highly informative throughout the money-
ness/maturity plane, and are especially strong for
ATM as opposed to OTM options, and for calls
rather than puts.

Appendix E analyzes the model’s ability to fore-
cast (cumulative) mean returns over longer hold-
ing periods of five and ten trading days, and
arrives at similar conclusions to those for one-day
forecasts.

4.4 Volatility forecasts

Next, we analyze our model’s conditional forecast
distributions by evaluating its accuracy in pre-
dicting return volatility. Our analysis mirrors that
for mean forecasts. We adapt Mincer–Zarnowitz
regressions to assess forecasts of return dispersion
by replacing Equation (6) with the regression

|ri,t+1| = c0 + c1Êt |ri,t+1| + ei,t+1,

where Êt |ri,t+1| ≡ 1
B

∑
b |r̂bi,t+1|.

Table 2 reports one-day absolute return forecast
regressions pooling all contract-days. Column 1

Figure 4 Out-of-sample mean forecast accuracy by moneyness/maturity.
Note: Forecasting regressions for delta-hedged returns to selling option contracts within moneyness/maturity bins using the mean of the
ORB forecast distribution for each contract-day.
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shows that contract characteristics strongly pre-
dict return volatility with an R2 of 24.2%. In col-
umn 2, the bootstrap volatility forecast achieves
anR2 of 28.2% with a slope estimate of 0.65. The
SVCJ forecast in column 3 is also informative, but
the magnitudes are substantially less with an R2

of 3.9% and a slope of 0.03. Combining all pre-
dictors in column 4 produces a mild increase inR2

to 30.6% from the bootstrap-only R2 of 28.2%.12

At horizon of one-week the pattern in volatility
prediction is essentially the same. For two-weeks,
however, Characteristics improve in predictive
power, even though the bootstrap slope is still
relevant at 0.34 and significant (t-stat of 7.8).

4.5 Quantile forecasts

Lastly, we evaluate model forecasts in terms of
their ability to predict quantiles throughout the
distribution. This is our most demanding assess-
ment of forecast accuracy as it requires the model
to precisely describe conditional probabilities of
rare events.

For each option contract i on day t , the bootstrap
and SVCJ models generate a conditional distribu-
tion for the option price at time t+h. An accurate
forecast distribution will see realized t +h prices
fall below its 1st percentile in approximately 1%
of observations. Likewise, the forecasted medians
and 99th percentiles will exceed roughly 50% and
99% of the matched realized prices, respectively.
We therefore analyze quantile fits by describing
the frequency with which the forecasted quan-
tile exceeds the realized price. This frequency is
equal to the cumulative empirical distribution of
probability integral transforms, as described in
Appendix D.

In Table 3, we report the bootstrap model’s out-
of-sample fit of the 1, 5, 10, 25, 50, 75, 90, 95,
and 99 percentiles of the future option price distri-
bution. This is the tabular analogue of the CDF’s

Table 3 Quantile forecasts.

One-day One-week Two-weeks
Target

quantile ORB SVCJ ORB SVCJ ORB SVCJ

1 1.0 30.6 0.9 15.4 0.8 9.5
5 4.7 37.5 3.4 22.6 3.3 15.9

10 9.4 41.7 7.6 28.0 6.8 21.1
25 23.2 49.4 22.0 39.7 21.3 33.2
50 49.2 58.2 50.7 55.3 51.7 51.9
75 74.4 66.6 77.1 70.3 79.4 71.2
90 89.0 73.0 91.5 80.8 92.3 84.0
95 94.2 76.3 95.7 85.7 96.2 89.2
99 98.7 81.4 98.9 91.6 98.8 94.9

Note: Frequency with which forecasted quantile from each model
exceeds corresponding data realization.

in the second panel of Figure A.2. The first col-
umn shows the targeted quantile (the CDF of the
standard uniform distribution, or the 45-degree
line in Figure A.2) and remaining quantiles show
the exceedance frequency for forecasted quantiles
in each model. The first column reports one-
day-ahead quantile fits from the out-of-sample
bootstrap model. For example, bootstrap fore-
casts for the 1st percentile exceed the realized
price in 0.9% of the all contract-days in our sam-
ple. The 5th and 10th percentile forecasts exceed
4.7% and 9.4% of realizations, respectively. In
short, the bootstrap model accurately describes
the probability of low option price outcomes one-
day out. It is similarly accurate in the center
of the distribution with fitted values of 23.2%,
49.2%, and 74.4% for the 25th, 50th, and 75th
percentiles, respectively. Finally, it accurately
captures probability of rare events associated with
large price realizations, achieving fitted values of
89%, 94.2%, and 98.7% for the 90th, 95th, and
99th percentiles, respectively.

In the SVCJ calibration of Broadie et al. (2009),
realized one-day-ahead prices fall below the fore-
casted 1st percentile 30.6% of the time, and
realizations land above the SVCJ 99th percentile
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81.4% (1−65.8%) of the time. These indicate that
the SVCJ calibration predicts far too narrow of a
conditional price distribution compared to that in
the data.

The quantile fits in Table 3 pool all contract-days
in our sample. In Figure 5, we investigate whether
one-day-ahead quantile forecasts are especially
successful or problematic in specific ranges of
moneyness and maturity. We double sort observa-
tions into the 24 moneyness and maturity bins that
we used for FigureA.3, then calculate quantile fits
within each bin. The left panel of Figure 5 reports
results for the bootstrap model. The horizontal
axis corresponds to bin moneyness, and line col-
ors differentiate maturity. Some bins experience
a mild deterioration in accuracy relative to the
pooled sample: Median and upper quantile fore-
casts for OTM calls, and for median forecasts for
short-dated OTM puts. But, as a whole, bootstrap

quantile fits are remarkably accurate throughout
the moneyness/maturity plane.

As a benchmark, the right panel of Figure 5
gives a full characterization of the distributional
forecasting challenges faced by the SVCJ model.
SVCJ forecasts are most accurate for short-dated,
ATM options. At all maturities, the predicted
distributions cannot generate realistic dispersion
in future prices, and this problem worsens at
higher maturities and away from the money.
Furthermore, SVCJ forecast distributions appear
severely biased downward for OTM puts and
biased upward for OTM calls.

Appendix E shows the performance of boot-
strap quantile forecasts at longer maturities. In
Appendix F we present the results of this section
for different specifications of the model with 3, 7,
9, and 21 factors.

Figure 5 One-day conditional quantile forecasts by moneyness/maturity.

Note: Frequency with which ORB forecasted quantile exceeds corresponding data realization.
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5 Economic Applications

In this section we study the usefulness of our
bootstrap forecasting approach in financial and
economic applications including risk manage-
ment, measuring risk premia for state-contingent
market exposures, and portfolio optimization.

5.1 Risk management

We study two risk management problems using
bootstrap forecasts. The first is delta hedging an
option position. For many option market partici-
pants, and for market makers in particular, delta
hedging is the single most important risk manage-
ment task. It allows the market maker to absolve
its option inventory of its predominant source of
risk—that is associated with fluctuations in the
underlying spot price.

The bootstrap model delivers a complete char-
acterization of the joint conditional distribution
of the underlying price with each contract price.
Thus, the optimal least squares delta hedge is easy
to construct via regression. Standing at date t and
given a bootstrap sample of next period spot prices
(Ŝbt+1) and option prices (P̂ bi,t+1), we estimate the

hedge ratio 
i,t by regressing forecasted option
prices on spot prices across bootstrap draws b:

P̂ bi,t+1 − Pi,t = 
i,t (Ŝ
b
t+1 − St)

+ intercept + controls + ebi,t .

This regression is estimated separately for each
contract i on date t . In congruence with our ear-
lier results,
i,t is a purely out-of-sample estimate
as the bootstrap draws for t + 1 are constructed
only using data and estimates through date t .
The simplest bootstrap delta estimate omits con-
trol variables, but we also consider a version
that accounts for bootstrapped changes in option
implied volatility to potentially produce a purer
delta hedge that is closer to the partial derivative
represented by the Black–Scholes delta.

Next, to evaluate the performance of delta hedges,
we regress realized option price changes on the
model-based delta hedge, pooling all contract-
days:

Pi,t+1 − Pi,t = b0 + b1 · 
̂i,t
× (St+1 − St)+ ei,t+1.

We report delta hedge performance for the
bootstrap, SVCJ, and Black–Scholes models in

Table 4 Delta hedge regressions.

1 2 3 4 5 6

ORB 0.97 0.69
127.68 (8.7)

ORB (IV control) 0.995 1.03
185.985 (4.8)

SVCJ 0.99 0.12 −0.49
231.99 (3.5) (8.5)

Black–Scholes 1.00 0.18 0.45
189.69 (1.9) (2.1)

Date FE ‘No’ ‘No’ ‘No’ ‘No’ ‘No’ ‘No’
R2 91.5 89.8 88.0 89.5 91.9 90.2
N (10000s) 142.8 142.8 142.8 142.8 142.8 142.8

Note: Pooled forecasting regressions of option contract price changes on model-based delta
hedges. Standard errors are clustered by day.
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Table 4. The results show that all models deliver
effective hedges, with R2 ranging from the low
end of 88.0% for the SVCJ model to a high of
91.5% for ORB. In multiple regressions, the boot-
strap delta results in the most beneficial hedge.
When the bootstrap delta is constructed control-
ling for changes in option IV, the ORB hedge
subsumes the hedging efficacy of Black–Scholes
and SVCJ delta.

To quantify the delta hedging improvement from
ORB in economic terms, we compare the vari-
ance in hedged option price changes between our
model and the standard Black–Scholes hedge. We
define the delta-hedged price change for contract
i based on model M as

Hi,t+1,M ≡ Pi,t+1 − Pi,t

−
M(St+1 − St).

Then, following Hull and White (2017), we define
the hedging improvement from ORB relative to
Black–Scholes as

100 ×
(

1 − V ar(Hi,t+1,ORB)

V ar(Hi,t+1,BS)

)
.

Figure 6 summarizes the results. When variances
are computed from all pooled observations, the
out-of-sample variance improvement from hedg-
ing with ORB is 14.4% (gray dashed line). The
figure shows that Black–Scholes is most compet-
itive for short-dated ATM puts, in which case the
ORB variance improvement is 9.3%. The largest
benefits of bootstrap hedges emerge for options
that are long-dated and deep OTM, where the
improvement is as large as 31.4%.13

The second risk management problem that we
consider is constructing option portfolio value-
at-risk (VaR). The conditional quantile analy-
sis of Section 4.5 demonstrates the efficacy of
our bootstrap model for price distributions on a
contract-by-contract basis. Successful portfolio
VaR forecasts must describe quantiles in return

Figure 6 ORB delta hedge improvement versus
Black–Scholes.
Note: Percentage variance reduction in delta-hedged option price
changes by moneyness/maturity bin from using ORB delta versus
Black–Scholes delta.

space and demand that the model not only be suc-
cessful in describing the tails of marginal return
distributions, but must also accurately predict the
joint tail of many contracts at once. Because
the model generates a complete joint distribution
for all contracts, combining bootstrap draws into
portfolios allows one to produce the joint dis-
tribution for any set of portfolios of individual
contracts.

We evaluate VaR forecasts from the ORB model
by assessing the accuracy of conditional quantile
forecasts of delta-hedged returns to six differ-
ent option portfolios. The first four are equal-
weighted portfolios that sell individual options
in different moneyness and maturity bins. We
consider short-dated (less than 60 days to matu-
rity) and long-dated (180 to 365 days to maturity)
contract bins comprising of either OTM puts
(moneyness of −2 to −1) or OTM calls (money-
ness of 0 to 1). From these four basic portfolios,
we then construct two long–short spread portfo-
lios. The first is a risk reversal portfolio that sells
puts by investing one unit in each of the short-
dated and long-dated OTM put portfolios and
buys calls by investing negative one unit of each
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Table 5 Portfolio value-at-risk forecasts.

Moneyness/Maturity portfolios Spread portfolios

Target Short-dated Short-dated Long-dated Long-dated Term Risk
quantile OTM Put OTM Call OTM Put OTM Call spread reversal

1 1.0 0.9 0.6 0.4 0.2 0.8
5 4.1 4.1 3.5 2.5 1.6 5.6

10 8.0 7.8 7.7 5.6 3.9 11.3
90 90.5 87.9 95.3 92.7 96.0 93.2
95 95.3 93.7 98.3 96.7 98.6 97.3
99 99.2 98.5 99.9 99.5 99.8 99.5

Note: Frequency with which ORB forecasted VaR exceeds corresponding data realization.

OTM call portfolio. The second is a term spread
portfolio (constructed by investing one unit in
each of the short-dated portfolios and negative
one unit of the long-dated portfolios).

Portfolio VaR results are reported in Table 5.
Because the first four portfolios are selling
options, low quantiles represent large losses to a
short position, and high quantile describe extreme
losses for a long position in the same options. For
low quantiles, ORB forecasts are somewhat more
accurate for short-dated options than long-dated.
At high quantiles, VaR forecasts are very accu-
rate with the exception of long-dated puts, where
ORB forecasts tend to be more extreme than what
we actually see in the data (thus they are conser-
vative from the perspective of an options investor
taking a long position).

VaR forecast exceedance frequencies for the
long–short risk reversal strategy are also remark-
ably accurate at 0.8%, 5.6%, and 11.3% for
the 1%, 5%, and 10% quantiles, respectively.
For high risk reversal quantiles, ORB produces
slightly more extreme outcomes than seen in
the data. The weakest ORB performance is for
the term spread portfolio, where for low quan-
tiles estimates are significantly below the targets
and for high quantiles estimates are significantly
higher. The overall takeaway from the table is that

the model produces accurate VaR forecasts for
delta-hedged option portfolio returns, indicating
that the ORB model capably describes tail depen-
dence among returns to individual contracts.

5.2 Risk and return surfaces

Options contracts are unique in providing dis-
tinct state-contingent payoffs to the aggregate
equity claim. They are the among the real-world
traded securities that come closest to the theo-
retical state-price securities described by Arrow
and Debreu (1954). By better understanding the
risk compensation earned by these market-linked
securities we improve our understanding of risk
premia demanded by the typical investor. In
this section, we use the bootstrap forecasting
model to construct volatility, expected return, and
Sharpe ratio “surfaces.” We thereby describe risk
compensation as a function of economic states
described by option moneyness and maturity—
that is, as a function of the future market
value of the S&P 500 index at various invest-
ment horizons. Perhaps most interestingly, our
model allows us to reconstruct risk and com-
pensation surfaces day-by-day, conditional on
prevailing economic conditions, which further
describes how risk premia interact with state of the
economy.
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To provide an empirical baseline for understand-
ing risk and return along the moneyness/maturity
plane, we first study the unconditional returns of
options portfolios. In particular, we form port-
folios each day by interpolating realized returns
of traded contracts to fixed grid points at maturi-
ties of 60, 120, and 180 days and moneyness of
−2 to 1 at increments of 0.25. These are gen-
uine portfolio returns, with individual contract
weights determined by the distance between the
contract and grid point. We then estimate uncon-
ditional expected returns, variances, and Sharpe
ratios from the time series of portfolio returns at
each grid point.

We plot annualized statistics for two-weeks’ port-
folio returns in the first column of Figure 7. Again,
the returns we study are those accruing to an
option seller and are hedged daily using Black–
Scholes delta. In the data, unconditional annual
Sharpe ratios are highest for short-dated options
and gradually decline with maturity. Sharpe ratios
are also higher for OTM puts versusATM options.
These estimates indicate that investors demand
the greatest compensation for selling insurance
against states of the world with large market
declines, and are particularly averse to large mar-
ket declines occurring in the immediate rather
than distant future.

Next, we construct corresponding estimates of
unconditional option return moments based on
our bootstrap model. To complement each and
every realized option return in our sample, our
model provides the corresponding (ex ante) boot-
strap forecast distribution. Just as we interpolate
realized returns to form time series portfolio
returns at fixed grid points, we likewise con-
struct forecasted mean and variances for grid
point portfolios by interpolating the contract-level
forecasted moments day-by-day. The forecasts on
a given day correspond to the conditional portfo-
lio return distribution. We estimate unconditional

mean and variance by taking time series averages
of their conditional values. From the uncondi-
tional moments, we compute the portfolio-level
unconditional Sharpe ratio estimate from our
model. The ORB model statistics are plotted in
the second column of Figure 7.

The bootstrap model’s estimates of uncondi-
tional expected returns, volatilities, and Sharpe
ratios match the basic patterns and magnitudes
in the data. Compensation per unit of risk is
greatest for short-dated contracts and for OTM
put contracts. For comparison, column 3 of
Figure 7 shows unconditional moment estimates
for moneyness/maturity portfolios based on the
SVCJ model. The pattern in unconditional mean
returns, volatility, and Sharpe ratios deviate dras-
tically from the data. Some basic patterns, such as
the term structure of Sharpe ratios, are reversed in
the SVCJ model. The magnitudes of SVCJ model-
based estimates differ drastically, by an order of
magnitude in some places, compared to the data.
While OTM puts earn annualized Sharpe ratios
between 0.56 and 1.15 in the data, the same range
from the SVCJ model is 1.8 to 23.

Figure 7 shows that the bootstrap model specifica-
tion captures the basic patterns in unconditional
risk and return surfaces for the S&P 500 index.
But power of our model is that it can charac-
terize the (ex ante) conditional risk and return
surface at each point in time. While one can
arrive at a reasonable model-free estimate of
unconditional option return surfaces by calculat-
ing sample moments of portfolio returns over the
full time series (as in column 1 of Figure 7)—there
is no such model-free analogue when it comes to
describing conditional return surfaces. The semi-
parametric nature of the ORB model adds enough
structure allow us to describe how conditional
risks and risk compensation vary along the sur-
face in different economic conditions. And the
accuracy of the model’s description (especially
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Panel A: Expected returns

Panel B: Standard deviation

Panel C: Sharpe ratio

Figure 7 Unconditional moments of two-week returns.
Note: Annualized means, volatilities, and Sharpe ratios for delta-hedge returns to selling options by moneyness/maturity bin. Data
averages as well as ORB and SVCJ model estimates are reported in left, center, and right columns, respectively.
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Panel A: Expected returns

Panel B: Standard deviation

Panel C: Sharpe ratio

Figure 8 Conditional moments of two-weeks returns.
Note: Annualized means, volatilities, and Sharpe ratios for delta-hedge returns to selling options by moneyness/maturity bin in the ORB
model. Figures show unconditional moments along with conditional moments in high and low volatility regimes.
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in comparison to a natural benchmark model like
SVCJ) lend confidence that the model-based con-
ditional surfaces provide a realistic description of
the true conditional return distribution.

Figure 8 draws bootstrap model-based surfaces
for conditional expected return, volatility, and
Sharpe ratio. We study two different conditioning
sets—one representing unusually high volatility
states and the other one for low volatility states.
For high volatility states, we study days on which
VIX exceeds its 75th percentile of 23.6% (based
on the 1996–2019 sample), and low volatility
regimes are those when VIX is below its 25th
percentile of 14.2%. We estimate the condi-
tional surfaces for these regimes by averaging the
model’s ex ante one-day forecasts for mean and
variance of returns, then converting these aver-
ages into a conditional Sharpe ratio. Rows report
expected return, volatility, and Sharpe ratio,
respectively, while columns break out surfaces by
maturity.

Throughout the surface, option return volatilities
are higher in high volatility states. This is due pri-
marily to a rise in volatility-of-volatility and rise
in the likelihood of large price moves (because
options positions are delta-hedged). However,
expected option returns do not appear to rise in
higher volatility states. This surprising fact has the
implication that option Sharpe ratios are higher
when overall market is low.

By visualizing conditional risk, return, and
Sharpe ratio surfaces for S&P 500 index options,
one can begin to infer the types of positions that
a relatively risk tolerant investor might take to
exploit differences in risk premia throughout the
moneyness and maturity plane. In Appendix H
we solve the Markowitz (1952) portfolio choice
problem faced by an option market investor
given out-of-sample forecasts for the joint dis-
tribution of options returns from our bootstrap

model and present empirical analysis of portfolio
performance.

6 Discussion and Conclusions

We present a statistical model for constructing
forecast distributions for option returns. In the
S&P 500 index options market, our approach has
a high degree of predictive accuracy for means,
volatilities, and even extreme quantiles of option
returns, especially relative to characteristic-based
forecasts or forecasts from a traditional no-
arbitrage model with stochastic volatility and
price jumps. Our method demonstrates promis-
ing performance in economic applications such as
risk management and portfolio choice. By draw-
ing risk, return, and Sharpe ratio surfaces along
the moneyness and maturity plane, we illustrate
how our model can be used to understand the
conditional risk prices that investors demand for
bearing exposures to state-dependent payoffs in
the aggregate equity market.

The great advantage of our option return model
is its flexibility and ease of use. It requires four
basic statistical techniques. The first is interpo-
lation, which we use to build static synthetic
options with constant moneyness and maturity.
This step allows us to estimate the econometric
model on assets with a fixed identity. We also
use interpolation to translate forecasts at fixed
surface grid points back to the actual contracts
at coordinates off of the grid. Second, we use
simple time series forecasting models. The back-
bone of ORB is a linear vector autoregression
that captures the joint evolution in the S&P 500
spot price and the factors driving the IV surface.
Third, we use GARCH to incorporate condi-
tional volatility dynamics in factor innovations
and surface residuals. The fourth technique we
rely on is the bootstrap, which allows us to trace
out forecast distributions for option prices with-
out making specific parametric assumptions about
shock distributions.
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Each of these elements can be implemented in
any basic statistical software. The main fore-
casting specification can be easily adjusted and
reoptimized by adding or removing grid points to
the interpolated surface, changing the number or
identities of surface factors in the VAR, adopt-
ing essentially any variety of GARCH model
for shock volatilities, or modifying the way that
bootstrap samples are drawn. The computational
burden of the model is minimal. Estimation of the
model takes a matter of seconds, which means that
the recursive out-of-sample forecasts we report
take no more than a few minutes to build for our
23-year sample.

We use our method to draw surfaces for expected
returns, volatility, and Sharpe ratios of options
throughout the moneyness/maturity plane. In
doing so, we provide new insight into the risk
and risk premia of state-contingent claims to
the aggregate equity market. Our ORB provides
an accurate description of unconditional risk
compensation, while the traditional no-arbitrage
model that we analyze reverses basic patterns
along the surface and is sometimes drastically
different from the data in terms of Sharpe ratio
magnitudes. More importantly, we are able to
study conditional risk premium surfaces, which
cannot be studied without the aid of a model’s
parametric structure. Our model appears uniquely
well suited to describe conditional surfaces based
on the evidence that ORB excels in forecasting
future option return distributions.

Our approach has limitations as well. Because
we rely on non-parametric interpolation of the IV
surface, we place few restrictions on the shape
of the surface. This flexibility is a virtue for
data sets dense with observations throughout the
moneyness and maturity plane, but becomes a
curse in sparsely populated regions of the sur-
face. Where contracts are few and far between,
the interpolation may become inaccurate and any

noise that this introduces will filter through model
estimates and eventually manifest in the fore-
cast distribution. Our decision to study contracts
with moneyness between −2 and 1 and maturity
between 20 and 365 days is driven precisely by
this consideration. In the early part of the sample,
contracts with less than one month to maturity
have few traded strikes and longer maturity claims
tend to be very widely spaced, thus we choose
a moneyness/maturity rectangle that seems to
balance breadth of the surface against contract
density. An alternative modeling approach that
takes a stand on a parametric functional form for
the surface can potentially be successful in sparse
data settings, but comes at the cost of potential
misspecification in the parametric structure.

Our statistical model is a complement to mod-
els that strictly impose economic restrictions such
as no-arbitrage. For example, by comparing dif-
ferences in model-implied conditional moments,
we can use our statistical framework to better
detect and correct misspecifications of the eco-
nomic restrictions. Similarly, one of the biggest
difficulties facing no-arbitrage option models is
accurately estimating the P distribution of the
underlying. Incorporating information into option
return moments like those we study can help esti-
mate the P specification of no-arbritrage models
by alleviating some of the difficulties of hav-
ing to infer the P distribution for index returns
alone.
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Appendix

A SVCJ Model Calibration

The SVCJ model that we study is from Broadie
et al. (2007). The price and stochastic volatility
processes under the P measure are

dSt = (r + μ− δ)Stdt + St
√
VtdW

s
t (P)

+ d

⎛
⎝Nt(P)∑
n=1

Sτ−
[
eZ

s
n(P)−1

]⎞⎠

− St ūs(P)λ(P)dt (A.1)

dVt = κ(P)(θ − Vt)dt + σv
√
VtdW

v
t (P)

+ d

⎛
⎝Nt(P)∑
n=1

Zvn(P)

⎞
⎠ (A.2)

where Ws
t (P) and Wv

t (P) are Brownian motions
with correlation ζ (denoted ρ in their paper, but
not to be confused withρ in our Equation (2)). The
risk-free rate, equity risk premium, and dividend
yield are r, μ, and δ, respectively. Zv denotes
the volatility jumps and follows a exponential
distribution with parameter μv(P), Zs is jump
in prices which are conditionally distributed as

Zsn|Zvn ∼ N(μs(P) + ρsZ
v
n, (σs(P))

2). Nt is the
Poisson process with intensity λ(P) and μ̄s(P) =
exp(μs(P) + (σ (P))2/2) − 1. In general, the
model under the Q measure is identical with the
exception that all parameters having P superscript
in Equation (A.2) are allowed to take different
values under Q.

To estimate the parameters under the P measure,
we follow Eraker et al. (2003) and run a similar
MCMC on the time series of the index returns.14

For the Q measure parameters estimation, we use
a similar approach as Broadie et al. (2007) that
minimize the squared errors of Black–Scholes
implied volatilities over the same panel of options
used in the rest of the paper.15 We impose the
same restrictions on the estimation: the parame-
ters that theoretically should be the same on both
measures are restricted to be the estimates from
the P estimation for consistency; we set κQ = κP

due to the difficulty to identify this risk-premium
estimate and λQ = λP since only λQμ

Q
s is identi-

fiable; we also impose thatσQ
s = σP

s as the impact
over the fits is relatively small.

Table A.1 “SVCJ” parameters.

P-measure Q-measure

μ 0.034 0.034
θ 0.785 0.785
κ 0.024 0.024
σv 0.157 0.157
μy −1.212 −1.810
ρJ −0.466 −0.466
σy 1.428 3.290
μv 1.205 1.508
ρ −0.802 −0.802
λ 0.014 0.014
RMSE 3.53%

Note: MCMC estimates of physical-measure
parameters of the SVCJ model and the
risk-neutral counterparts that minimized the
squared error of implied volatilites of the panel
of options.
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The parameters are reported in Table A.1. The
RMSE over the Black–Scholes implied volatilies
is 3.48%, which is line with Broadie et al. (2007)
equivalent model of 3.58%.

B SVJ Model Calibration

The SVJ model that we study is from Broadie
et al. (2009) and Chambers et al. (2014). The
price and stochastic volatility processes under the
P measure are

dSt = (r + μ− δ)Stdt

+ St
√
VtdW

s
t (P)

+ Jt(λ
P, μP

J , σ
P
J ) (A.3)

dVt = κ(θP − Vt)dt

+ σv
√
VtdW

v
t (P)

where Ws
t (P) and Wv

t (P) are Brownian motions
with correlation ζ (denoted ρ in their paper, but
not to be confused withρ in our Equation (2)). The
risk-free rate, equity risk premium, and dividend
yield are r, μ, and δ. The term Jt(λ

P, μP
J , σ

P
J )

represents a normal mixture price jump with

Table A.2 Quantile forecasts.

One-day One-week Two-weeks
Target

quantile SVCJ SVJ SVCJ SVJ SVCJ SVJ

1 30.6 28.5 15.4 16.9 9.5 9.7
5 37.5 32.8 22.6 23.9 15.9 19.2

10 41.7 35.5 28.0 27.8 21.1 23.6
25 49.4 40.6 39.7 36.0 33.2 33.2
50 58.2 46.8 55.3 46.8 51.9 46.6
75 66.6 52.8 70.3 57.6 71.2 60.4
90 73.0 57.5 80.8 65.9 84.0 70.8
95 76.3 60.1 85.7 70.1 89.2 75.7
99 81.4 64.4 91.6 77.8 94.9 86.5

Note: Frequency with which forecasted quantile from each model
exceeds corresponding data realization.
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Figure A.1 One-day conditional quantile forecasts
by moneyness/maturity.
Note: Frequency with which SVJ forecasted quantile exceeds
corresponding data realization.

intensity, mean jump size, and jump size volatility
of λP, μP

J , and σP
J .

The model under the Q measure is identical
with the exception that all parameters having P

superscript in Equation (A.3) are allowed to take
different values under Q. Our SVJ simulations use
the specific P parameter values reported in Table 1
and Q parameters reported in Table 7 (row 1) of
their paper.

Table A.2 and Figure XX show the counterparts
results of 3 and Figure 5 using this model and
calibration—results are qualitatively similar.

C Model Parameter Estimates

This appendix describes estimates of model
parameters and processes. We focus on the model
with five surface factors—the log VIX plus two
put surface PCs and two call surface PCs, and we
report full sample estimates. Table A.4 reports the
estimated ρ matrix for the factor vector autore-
gression. To help reduce parameterization, we
impose zero coefficients on the dynamic associa-
tion of the index return with surface factors. This
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restriction does not play a large role in our analy-
sis, as the estimated coefficients are close to zero
and insignificant when the restriction is lifted.

FigureA.5 reports factor loading estimates at each
grid point. Figure A.6 reports the R2 of the sur-
face factor model at each grid point as well as the
time series average GARCH volatility of surface
errors. Figure A.7 plots the daily time series of
surface factors (excluding the VIX). Figure A.8
plots the daily time series of GARCH volatilities
for each surface factor.

D ORB Specification Choice

The model formulation of Section 3 allows the
surface factor vector to include a general number
of principal components from the IV surface, in
addition to including the S&P 500 index return
and log VIX. We choose the number of principal
components using model selection in an initial
training and validation sample. Specifically, we
reserve the first 1,000 daily observation to con-
duct our model selection. These observations are
all distinct from (and occur strictly prior to) our
out-of-sample test observations that we use in our
empirical results in the rest of the paper.

The specifications that we choose among are
the following. In the simplest specification, we
consider a single surface factor—the log VIX.
We gradually increase the number of factors by
adding PCs of the log IV surface. Whenever we
expand the specification, we add one PC each
from the put surface and call surface (orthogo-
nalizing each added call PC against the added
put PC). Thus the number of factors we con-
sider proceeds in increments of two. The largest
specification we consider has 21 factors.

In our 1,000-day training/validation sample, we
mimic the same recursive estimation procedure
that we use throughout the paper. Beginning with
a sample of the first 300 observations, we estimate

the model and construct out-of-sample predic-
tions for prices in period 301. We add one period,
repeat the estimation, and forecast one further out-
of-sample period. We iterate until the first 1,000
periods of our sample are exhausted. We do this
for each model specification and compare their
out-of-sample performance.

As the focus of our paper is describing condi-
tional distributions of option returns (as opposed
to just the conditional mean option return), we
use a measure of forecast accuracy motivated
by the density forecasting literature. Following
Diebold et al. (1998), we compute the probabil-
ity integral transform (PIT) for each observation
in our sample based on the bootstrap distribution
from our model. Consider a realized option price
(denoted pi,t+1) in our data set for contract i
on date t + 1. Given time t information, our
model describes a conditional cumulative fore-
cast distribution F̂i,t+1|t of pi,t+1 via bootstrap.
The probability integral transform evaluates the
forecast distribution at the realized data value,
PITi,t+1 = F̂i,t+1|t (pi,t+1). As shown in Diebold
et al. (1998), PITi,t+1 follows an independent
standard uniform distribution when F̂i,t+1|t is the
CDF of the true data-generating process. The
logic behind this result is intuitive. A good fore-
cast model will see data realizations fall below
the forecasted 1st percentile approximately 1%
of the time, below the forecasted 10th percentile
approximately 10% of the time, and so forth. And
the PIT for an observation will be independent if
the model correctly accounts for all conditioning
information.

To assess the forecast accuracy of our model we
compare the distribution of model-based PIT with
a uniform distribution. For example, the left panel
shows how PITs from the bootstrap model with
five surface factors compare with the ideal uni-
form distribution. We calculate the RMSE by
averaging the squared vertical distance between
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the model CDF and uniform CDF for every data
point, then take the square root. We repeat this
for the distribution of PITs for a one-factor sur-
face (only the log VIX) all the way to a 21-factor
surface (log VIX plus 10 PCs from the call sur-
face and 10 from the put surface). The middle
panel compares this RMSE for different numbers
of surface factors. The model with only one factor
is clearly the worst on this metric, but models
with 3 to 21 factors have fairly similar perfor-
mance. To preserve the simplicity of the model,
for the remainder of our analysis we pick the
specification with five surface factors given by
the log VIX plus two additional PCs each from
the call and put surfaces. Note that we have
chosen the model specification based on only the
first 1,000 observations, and the remainder of the
paper reports purely out-of-sample results begin-
ning with observation 1,001. In appendix F we
also report results for different numbers of factors
as a robustness check.

The right panel of Figure A.2 shows the empiri-
cal PDF histogram of the out-of-sample PIT from
the bootstrap model based on five surface fac-
tors (the log VIX plus four additional surface
PCs) pooling all contract-days in our main test
sample. The dashed black line shows the ideal

uniform distribution. The middle panel shows the
same empirical distribution of PITs from the boot-
strap model in the form of a CDF, as well as the
ideal uniform CDF. To give a sense of the fore-
cast accuracy implied by this PIT distribution,
we plot the distributions of PITs from the SVCJ
model. The CDF from the bootstrap model closely
tracks the 45-degree line, indicating the model’s
accuracy in describing the conditional distribution
of future option prices. In contrast, the flatness
of the SVCJ CDF at extreme quantiles indicates
that the SVCJ model produces a forecast distri-
bution that is too narrow to describe the realized
data.

E Mean Forecasts: Multi-Period Returns

Next, we analyze the model’s ability to forecast
(cumulative) mean returns over longer holding
periods of five and ten trading days. We construct
multi-period forecasts by iterating one-period
forecasts as described in Section 3.2. In addition,
when constructing multi-period returns and return
forecasts, we implement a daily delta hedge. The
delta hedge helps to purge returns of variation
mechanically driven by the underlying spot return
and focuses our analysis more narrowly on return
variation unique to the options market.16

Figure A.2 Out-of-sample forecast accuracy.
Note: The left figure is a histogram of training sample PITs for all contracts in our sample based on the ORB model with five surface
factors. The center figure shows the RMSE of PIT distribution relative to the ideal uniform distribution for the full range of model
specifications (implemented on an out-of-sample basis and using only the first 1,000 observations). The right figure draws the out-of-
sample empirical CDF for the model with five surface factors, along with the ideal uniform CDF and the CDF of PITs based on the SVCJ
model.
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Table A.3 reports mean forecast performance for
multi-period delta-hedged options returns. One-
and two-week bootstrap forecast performance
is qualitatively the same as the performance of

one-day forecasts. Characteristic and SVCJ fore-
casts improve somewhat over longer horizons
with R2s rising to 0.3% and 0.6%, respec-
tively. Still the bootstrap forecast swamps these in

Table A.3 Mean return forecasting regressions: One and two-weeks ahead.

One-week Two-weeks

1 2 3 4 5 6 7 8

ORB 0.357 0.379 0.171 0.179
(6.3) (6.9) (4.3) (4.3)

SVCJ 0.018 0.011 0.034 0.027
(3.1) (2.3) (4.2) (3.6)

Money −0.008 0.007 −0.020 0.010
(1.1) (0.9) (2.1) (0.9)

TTM 0.000 0.000 0.000 0.000
(1.3) (0.9) (0.8) (0.7)

Gamma 2.645 7.311 6.044 12.212
(2.2) (4.5) (3.6) (5.6)

Vega 0.000 0.000 0.000 0.000
(0.9) (3.2) (0.4) (2.9)

Theta 0.000 0.000 0.000 0.000
(1.7) (1.3) (2.4) (1.9)

IV 0.092 0.198 0.139 0.156
(0.8) (1.9) (1.0) (1.3)

Money*Put 0.015 −0.009 0.037 −0.008
(1.5) (0.8) (2.6) (0.5)

TTM*Put 0.000 0.000 0.000 0.000
(0.9) (2.0) (0.0) (0.9)

Gamma*Put −3.423 −2.403 −5.707 −4.955
(2.1) (1.2) (3.2) (2.0)

Vega*Put 0.000 0.000 0.000 0.000
(3.4) (4.5) (3.9) (5.5)

Theta*Put 0.000 0.000 −0.001 0.000
(4.8) (4.0) (5.8) (4.8)

IV*Put −0.018 −0.106 0.020 −0.038
(0.3) (1.6) (0.3) (0.5)

Date FE No No No No No No No No
R2 (%) 0.344 2.916 0.336 3.452 0.633 1.792 0.624 2.623
N (10000s) 142.4 142.4 142.4 142.4 142.1 142.1 142.1 142.1

Note: Pooled forecasting regressions for delta-hedged returns to selling option contracts. Characteristic
coefficients are reported multiplied by 100. ORB and SVCJ predictors are means of the models’ simulated
return distribution for each contract-day. Standard errors are clustered by day.
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predictive content, with a two-week R2 of 1.8%.
The one-week bootstrap slope coefficient of 0.36
is similar to the one-day slope. At two-weeks,
however, forecast accuracy begins to deteriorate
to some extent as the slope drops to 0.71, but
remains highly significant with a t-statistic of 4.3.

Figure A.3 shows the performance of bootstrap
quantile forecasts at longer maturities. Iterated
bootstrap quantile forecasts deteriorate slightly at
longer forecast horizons. For example, at two-
weeks the predicted 1st and 10th percentiles
exceed realizations 0.8% and 6.8% of the time,
indicating that long-horizon model forecasts for

downside price movements are somewhat more
extreme than the data. On the other hand, SVCJ
forecasts of extreme quantiles improve with the
forecast horizon. At two-weeks, SVCJ 1st per-
centile forecasts exceeds 9.5% of the data and the
SVCJ 99th exceeds 94.9% of the data. The SVCJ
median forecast improves with horizon, with an
exceedance frequency of 58.2% and 51.9% at both
one-day and two-weeks. While our model con-
tinues to produce reasonably accurate quantile
forecasts at one and two-weeks, the figure illus-
trates that forecasts for extreme quantiles become
overly aggressive when iterated multiple periods
ahead. There is also evidence of an upward bias

One Week Two Weeks
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Figure A.3 ORB quantile forecast accuracy: One and two-weeks ahead.

Note: Frequency with which ORB forecasted quantile exceeds corresponding data realization.

Table A.4 Estimated ρ matrix.

Index Log VIX Put 1 Put 2 Call 1 Call 2

Index Return 0 0 0 0 0 0
VIX 0 0.982 −0.009 0.012 −0.023 −0.006
Put Factor 1 0 −0.207 −0.087 −0.437 −0.009 0.000
Put Factor 2 0 0.023 −0.039 −0.396 0.080 −0.019
Call Factor 1 0 −0.004 0.005 0.091 −0.276 −0.020
Call Factor 2 0 −0.004 −0.018 0.014 −0.036 −0.126

Note: Estimated full-sample coefficient matrix for factor vector autoregression.
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Figure A.4 One-day conditional quantile forecasts by moneyness/maturity for different models specifications.

Note: Frequency with which ORB forecasted quantile exceeds corresponding data realization.
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Figure A.5 Factor loading estimates by grid point.

Note: Full sample factor loadings by grid point.

in long-horizon median forecasts, particularly for
short-dated puts.

F Different Specifications

Bin return quantiles for different model specifica-
tions—models with 1, 3, 7, 9, 15, 17, 19, 21 are
displayed:

G Return Surfaces at Alternative Horizons

This appendix extends the the analysis of Sec-
tion 5.2 to investment horizons of one-day and
week. Figures A.9 and A.10 report unconditional

surfaces from the data along with the ORB and
SVCJ models, and Figures A.11 and A.12 show
conditional surfaces in high and low volatility
regimes from the ORB model.

H Portfolio Choice

By visualizing conditional risk, return, and
Sharpe ratio surfaces for S&P 500 index options,
one can begin to infer the types of positions that
a relatively risk tolerant investor might take to
exploit differences in risk premia throughout the
moneyness and maturity plane. The plots in Fig-
ures 7 and 8 suggest for example that, for an
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Figure A.6 Model R2 and surface error volatility by grid point.

Note: Surface factor model R2 and residual volatility by grid point.
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Figure A.7 Surface factor time series.

Note: Time series estimates of surface factors (excluding log VIX).

investor who is more risk tolerant than the mar-
ket as a whole, the most attractive compensation
comes from selling options on the short end of the
maturity spectrum and in the moneyness region
associated with severe market downturns (OTM

puts). The full formulation of an optimized portfo-
lio, however, relies also on the dependence among
contract returns, encoded in their conditional
joint distribution and described by the bootstrap
model.

Journal Of Investment Management Third Quarter 2024

Not for Distribtuion



Forecasting The Distribution of Option Returns 119

XIVgoLnruteRxednI

199601
199805

200009
200301

200505
200710

201002
201206

201410
201702

201906
0

0.01

0.02

0.03

0.04

0.05

0.06

199601
199805

200009
200301

200505
200710

201002
201206

201410
201702

201906
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Put Factor 1 Put Factor 2

199601
199805

200009
200301

200505
200710

201002
201206

201410
201702

201906
0

0.2

0.4

0.6

0.8

1

1.2

199601
199805

200009
200301

200505
200710

201002
201206

201410
201702

201906
0

0.1

0.2

0.3

0.4

0.5

0.6

Call Factor 1 Call Factor 2

199601
199805

200009
200301

200505
200710

201002
201206

201410
201702

201906
0

0.2

0.4

0.6

0.8

1

1.2

1.4

199601
199805

200009
200301

200505
200710

201002
201206

201410
201702

201906
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure A.8 Surface factor conditional volatility time series.

Note: Estimated conditional volatility time series for factor vector innovations.

In this section, we solve the Markowitz (1952)
portfolio choice problem faced by an option mar-
ket investor given out-of-sample forecasts for
the joint distribution of options returns from
our bootstrap model. On each day, hundreds of
contracts are traded making portfolio choice a

high dimension optimization problem. While in
principle our bootstrap method can handle even
high dimension problems, we simplify the set-
ting in order to make results for the optimal
portfolio easier to read and interpret. In particu-
lar, before solving for the mean–variance optimal
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Panel A: Expected Returns
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Panel B: Standard Deviation
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Figure A.9 Unconditional moments of one-day returns.
Note: Annualized means, volatilities, and Sharpe ratios for delta-hedge returns to selling options by moneyness/maturity bin. Data
averages as well as ORB and SVCJ model estimates are reported in left, center, and right columns, respectively.
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Panel A: Expected Returns

JVSBROataD

-2 -1 0 1
Moneyness

0.5

1

1.5

2
60 days
120 days
180 days

-2 -1 0 1
Moneyness

-1.5

-1

-0.5

0

0.5

1
60 days
120 days
180 days

-2 -1 0 1
Moneyness

-25

-20

-15

-10

-5

0

5

10

15
60 days
120 days
180 days

Panel B: Standard Deviation
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Figure A.10 Unconditional moments of one-week returns.
Note: Annualized means, volatilities, and Sharpe ratios for delta-hedge returns to selling options by moneyness/maturity bin. Data
averages as well as ORB and SVCJ model estimates are reported in left, center, and right columns, respectively.
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Panel A: Expected Returns
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Figure A.11 Conditional moments of one-day returns.
Note: Annualized means, volatilities, and Sharpe ratios for delta-hedge returns to selling options by moneyness/maturity bin in the ORB
model. Figures show unconditional moments along with conditional moments in high and low volatility regimes.
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Panel A: Expected Returns
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Figure A.12 Conditional moments of one-week-returns.
Note: Annualized means, volatilities, and Sharpe ratios for delta-hedge returns to selling options by moneyness/maturity bin in the ORB
model. Figures show unconditional moments along with conditional moments in high and low volatility regimes.
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portfolio, we collapse the full set of contracts into
a conditional joint distribution for the same four
moneyness/maturity portfolios studied in Table 5.
We solve for the maximum Sharpe ratio portfolio
targeting 1% annualized return volatility.

Table A.5 reports the post-formation performance
of mean–variance optimized portfolios based on
ORB, and represent returns to a strategy con-
structed on a genuinely out-of-sample basis. We
report Sharpe ratio, mean, volatility, skewness,
and kurtosis of one-day, one-week, and two-
week strategies. We also report performance of
nine benchmark strategies. The first solves the
identical mean–variance portfolio choice prob-
lem but instead uses forecast distributions from
the SVCJ model. Next, we report the four money-
ness/maturity portfolios that we use as base assets
in the mean–variance problem. The last four
benchmarks are common static option strategies.
We consider a short-dated risk reversal (investing
one unit in the short-dated OTM put portfolio and
an opposing one unit position in the short-dated
OTM call portfolio), the analogous long-dated
risk reversal, and a term structure trade using
either OTM puts or OTM call (selling short-dated
options and buying long-dated options with zero
net investment).

PanelA shows results for one-day returns. Among
the four moneyness/maturity portfolios, selling
short-dated OTM puts returns the highest Sharpe
ratio (1.3), but takes on large negative skewness
(−4.3) and high kurtosis (45.4). The static risk
reversals do not appear profitable with Sharpe
ratios near zero, but they eliminate negative skew-
ness and reduce kurtosis in the short-dated case.
The term structure trade produces an annualized
Sharpe ratio of 1.1 with puts and 0.4 with calls
and somewhat mitigates tail risk relative to naked
sales of short-dated options.

The one-day ORB optimized portfolio produces
higher returns than any of these and with lower

risk, with an out-of-sample Sharpe ratio of 5.7.
Furthermore, the skewness of the bootstrap port-
folio is 0.52, roughly the same as a static risk
reversal and improving on skewness of around
−1.5 for static maturity trades. MVP kurtosis is
22.3, versus approximately 18 for static spread
trades. One-day return performance is of course
before transactions cost, which are known to be
large in this market and likely to make trad-
ing on model forecasts over such a short-horizon
infeasible. Nonetheless, it is an apples-to-apples
comparison to the benchmark portfolios which
are also before transactions costs, quantifying
ORB’s relative forecasting performance in eco-
nomic terms.

One-and two-week portfolio return performance
is more representative of what an investor might
feasibly achieve (gross of transaction costs).
Panel B shows that the same basic patterns hold
for one-week returns. The annualized bootstrap
Sharpe ratio is 1.9, which is much higher than
the Sharpe ratio of short-dated OTM put sales
of 1.22. For two-week returns (Panel C), the
Sharpe ratio gap narrows as the bootstrap deliv-
ers 1, versus 1.1 from the short-dated OTM put
portfolio. Finally, the table also reports mean–
variance optimized portfolio performance based
on expected return and covariance inputs from
the SVCJ model. SVCJ produces a portfolio that
is typically of similarly low variance as the ORB
portfolio, but it performs comparatively poorly
in terms of expected returns and thus delivers
unambiguously lower Sharpe ratios.

Table A.6 shows the time series average, 25th
percentile, and 75th percentile of the ORB opti-
mized portfolio weights in the base assets at each
investment horizon. For short investment hori-
zons, weights are smaller on average but have
a wide inter-quartile range, as expected returns
estimated from the model are typically small but
are highly variable (though reliably forecastable).
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Table A.6 ORB portfolio weights.

Moneyness −2 to −1 0 to 1 −2 to −1 0 to 1
Maturity 20 to 60 20 to 60 180 to 365 180 to 365

One-day
Mean −6.4 8.0 −9.1 7.4
75th Pct. 64.9 69.2 31.7 46.9
25th Pct. −77.0 −50.8 −54.7 −27.8
One-Week
Mean −32.8 27.0 −4.4 10.2
75th Pct. 14.3 75.0 45.9 47.2
25th Pct. −84.4 −13.6 −60.3 −21.9
Two-Weeks
Mean −46.5 34.1 −0.7 13.1
75th Pct. −13.4 73.0 51.5 49.9
25th Pct. −86.4 3.9 −59.0 −19.9

Note: Time series averages and percentiles of ORB model optimized portfolio
weights in percent using four moneyness/maturity option portfolios as base assets.

Model-based expectations are comprised of esti-
mated risk premia as well as any mispricings that
the model predicts will correct. The combina-
tion of frequent changes in the signs of portfolio
weights and an out-of-sample one-day Sharpe
ratio as high as 5.7 suggests short-lived option
mispricings (that would be difficult to arbitrage
in practice after accounting for transactions costs)
make up a large fraction of the one-day expected
return estimate. In contrast, at horizons of one
and two-weeks, the weights on each money-
ness/maturity bin take on a more consistent sign
indicating that a durable risk premium is con-
tributing expected returns over longer holding
periods.

At one and two-weeks, the max Sharpe ratio ORB
portfolio shows substantial negative skewness and
excess kurtosis. This fact can also be understood
by looking at the typical portfolio weights that it
selects. Consistent with the results in Figure 7,
the strategy is generally a net seller of options,
particularly selling puts and doing so especially
aggressively on the short-dated end of the surface.
In overweighting short-dated OTM puts, the ORB

portfolio inherits the kind of tail risk found in
OTM put portfolios.

Endnotes
1 In-sample, bootstrap residual distributions closely

match the moments of residuals by construction (up
to bootstrap uncertainty). This is not so on an out-of-
sample basis, which is why we focus on out-of-sample
forecast performance in our analysis.

2 Broadie et al. (2009), Chambers et al. (2014), and Hu
and Jacobs (2016) provide analytical characterizations
of one aspect of the distribution, expected option returns,
for certain affine models. Aït-Sahalia et al. (2020b) also
provide approximated closed-form solutions to estimate
parameters of similar classes of models.

3 For example, affine log volatility processes appear more
consistent with the data than those affine in volatility
levels (Chernov et al. (2003);Amengual and Xiu (2016))
but do not admit closed-form prices, thus suggesting that
one must accept some amount of model misspecification
in order to work with affine stochastic volatility models.

4 For example, option prices are affected by time-varying
demand pressures that may be easier to capture in a
non-parametric model than in traditional no-arbitrage
models (Garleanu et al., 2009).

5 See, for example, Ofek and Richardson (2003), Ofek
et al. (2004), and Constantinides et al. (2009).
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6 We implement the spline interpolation in Matlab via the
fit function with thinplateinterp fit type.

7 The first PC of the surface is over 99% correlated with
VIX.

8 This multi-step approach may be inefficient but has large
practical benefits. Estimating coefficients with regres-
sion, as opposed to using one-step joint MLE, greatly
simplifies the computation of our procedure by avoid-
ing repeated large scale numerical optimization in our
recursive out-of-sample approach. We do, however, use
numerical optimization to estimate variance models.
Because residual correlations are assumed constant, we
need only to estimate a sequence of univariate GARCH
models, each having low computing cost.

9 See, for example, the CBOE’s risk reversal index:
http://www.cboe.com / products / strategy - benchmark-
indexes/risk-reversal-index.

10 For comparison, the hedge ratio to make the risk-
reversal zero net investment is 2.30, to make it delta-
neutral is 1.31, to make it vega-neutral is 1.14, and to
make it gamma-neutral is 0.75.

11 Our option moneyness measure stands in for the Black–
Scholes delta. The regressors are nearly collinear when
included together with the put indicator. Replacing
moneyness with delta has negligible impact on the
regression.

12 In these regressions, the forecast target is not true volatil-
ity but a noisy proxy—the realized absolute return.
Noise in the dependent variable mechanically depresses
the forecast R2, understating the volatility prediction
power of all models reported in Table 2.

13 Our method is more general than the empirical minimum
variance delta-hedges studied in Hull and White (2017).
Like our procedure, they estimate deltas via regression.
Their method first forms option portfolios, then esti-
mates the empirical delta by regressing in the historical
sample. Thus their delta estimates are not contract-
specific and are not truly conditional. In contrast, we
estimate regressions within a data set of simulated future
data for the price of an individual contract and the
underlying spot. In doing so, our deltas incorporate con-
ditioning information based on the prevailing state of the
factor vector and are tailored to the exact moneyness and
maturity of the individual contract.

14 We closely follow Natalia Sizova’s code that can be
accessed in this link: https://natalia-sizova.thescholr.
com/software-0).

15 For a given set of parameters, options prices are
calculated using code given by Fusari (2015).

16 For a one-day forecast, the delta hedge in the data
and the forecast coincide as the one-day Black–Scholes
delta is known at time t . For forecasts beyond one-
day, we must forecast the delta hedge as well. We do
so by calculating the Black–Scholes delta at the boot-
strap forecasted option price (taking into account the
corresponding bootstrapped future spot price).
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