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CORRELATION SHRINKAGE: IMPLICATIONS
FOR RISK FORECASTING

Jose Mencheroa and Peng Lia

In this article, we study the impact of shrinking sample correlations toward zero. We find
that while such shrinkage may be beneficial from a portfolio-construction perspective,
there is virtually no benefit in terms of the accuracy of risk forecasts. In fact, we show that
correlation shrinkage typically increases the errors in risk forecasts, sometimes by a large
margin. Hence, we conclude that for purposes of estimating portfolio risk, the estimated
correlations should not deviate significantly from the sample correlation.

1 Introduction

Asset covariance matrices are used for two pri-
mary purposes in quantitative investment man-
agement. The first is for predicting portfolio
volatility, which plays a central role within the
risk-management function. The second appli-
cation occurs in mean–variance optimization
(MVO), which represents a technique pioneered
by Markowitz (1952) for constructing portfolios
with maximum expected return per unit of risk.

The simplest way to estimate the asset covari-
ance matrix is to compute the sample covariance
matrix. The elements of this matrix are obtained
by taking the time series of asset returns and
applying the textbook definition of sample covari-
ance.

aBloomberg.

Unfortunately, the sample covariance matrix suf-
fers from an “Achilles heel.” In particular, it is
not robust for MVO applications. To understand
the origin of this problem, we must borrow an
important fact from linear algebra: if the number
of assets is greater than the number of time peri-
ods T , then the sample covariance matrix is rank
deficient, which implies the existence of zero-
volatility portfolios (composed entirely of risky
assets). Invariably, portfolio optimizers will latch
onto these spurious “riskless” portfolios, creat-
ing what appears to be portfolios with infinite
risk-adjusted performance (ex ante).

Note that N > T is in fact the typical regime for
many financial applications. For instance, global
equity indices commonly contain several thou-
sand stocks. If weekly return observations are
used to estimate the sample covariance matrix,
then several decades of return history would be
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required to avoid spurious “riskless” portfolios.
Such long histories, of course, are typically not
available.

Even when T > N, which precludes the possibil-
ity of “riskless” portfolios, the sample covariance
matrix may still not be reliable for MVO pur-
poses. In a recent paper, Menchero and Ji (2019)
showed that using the sample covariance matrix
for constructing MVO portfolios leads to poor
risk-adjusted performance (out-of-sample), large
turnover, and high leverage. Another well-known
problem is that the sample covariance matrix
tends to systematically under-forecast the risk of
these optimized portfolios—often by a wide mar-
gin. All of these pitfalls are exacerbated as the
covariance matrix becomes increasingly “ill con-
ditioned,” which occurs when the half-life (HL)
parameter used to estimate correlations becomes
small relative to the number of assets.

A statistical technique known as “shrinkage” has
been applied to mitigate such problems. Shrink-
age involves blending a sample estimate, which
may be noisy but unbiased, with a “target”
value, which may be biased but has low noise.
The intuition behind shrinkage is that by opti-
mally trading off between noise and bias, we
may attain an estimate with lower mean-squared
error than either the sample or the target. An
early example of this technique was described
by Vasicek (1973), who showed that shrink-
ing market betas toward 1 led to a reduction
in the mean-squared error of estimated betas.
Another example—this one within a portfolio-
construction context—was from Ledoit and Wolf
(2003). They formed minimum-volatility fully
invested equity portfolios using asset covari-
ance matrices constructed using a variety of
techniques. They found that blending the sam-
ple covariance matrix with an appropriate target
was an effective tool for producing portfolios
with lower out-of-sample volatility. The two

shrinkage targets they considered were the iden-
tity matrix (which assumes uncorrelated stocks)
and the covariance matrix from a one-factor
market model, as described by Sharpe (1963).

In this paper, we study the implications of shrink-
age for risk-forecasting purposes. In particular,
we consider shrinking correlations toward the
identity matrix, which reflects the view that all
assets are uncorrelated. We focus on this shrink-
age target for two reasons. First, it represents an
explicit shrinkage target used in many applica-
tions. For instance, as described by Menchero
(2010), in equity multi-factor risk models indus-
try and style factors are represented by dollar-
neutral factor-mimicking portfolios. The average
correlation among these factor portfolios is close
to zero, making the identity matrix a natural
shrinkage target. The second reason we con-
sider the identity matrix is that it represents
an implicit shrinkage target in any model that
tends to systematically under-estimate correla-
tions. Multi-asset-class factor models, such as
those described by Shepard (2007), typically fall
into this second category. Hence, the results of
this paper have important implications for risk
forecasting of real-world portfolios.

Our main conclusions are as follows. First, we
show that from a risk-forecasting perspective, the
sample correlation is nearly optimal. Second, we
find that for any realistic choice of correlation HL
parameter, optimal shrinkage leads to immaterial
improvements in the accuracy of risk forecasts.
Finally, we demonstrate that excessive shrinkage
of correlations may lead to large errors in risk
forecasts.

Benefits of shrinkage for portfolio
construction

Before discussing the pitfalls of correlation
shrinkage from a risk-forecasting point of view,
we first consider the benefits of shrinkage for

Third Quarter 2020 Journal Of Investment Management

Not for Distribution



94 Jose Menchero and Peng L i

portfolio-construction purposes. In particular, we
present a simple example that illustrates how
shrinkage can improve the risk-adjusted perfor-
mance of MVO portfolios.

It is convenient to write the sample asset covari-
ance matrix �̂�� as a product of volatilities and
correlations,

�̂�� = V̂ĈV̂ (1)

where V̂ is a diagonal matrix whose elements are
the predicted volatilities of each asset, and Ĉ is the
sample asset-correlation matrix. Volatilities and
correlations are typically estimated using expo-
nentially weighted moving averages (EWMA),
which is characterized by an HL parameter. In
the current example, both V̂ and Ĉ are estimated
using the same HL parameter, although in other
cases it may prove useful to apply different HL
parameters to the volatilities and correlations.

Next, we select the identity matrix I as our shrink-
age target, which has ones along the diagonal and
zeros on the off-diagonal elements. This repre-
sents the view that all assets are uncorrelated.
Hence, the shrunk correlation matrix is

C̃λ = (1 − λ)Ĉ + λI, (2)

where λ is the shrinkage intensity, which varies
from 0 to 1. Note that λ = 0 recovers the sample
correlation matrix, whereas λ = 1 fully imposes
the structure of uncorrelated assets. Using the
shrunk correlation matrix computed as in Equa-
tion (2), the covariance matrix becomes

�̃��λ = V̂C̃λV̂. (3)

Note that the HL parameter in Equation (3) is
suppressed for notational simplicity.

Suppose that we wish to construct the optimal
portfolio under the view that all stocks have
the same expected return. In this case, all fully
invested portfolios have the same expected return.
Hence, the maximum Sharpe ratio portfolio

(ex ante) is the fully invested portfolio with
minimum volatility. To evaluate the efficacy of
shrinkage from an MVO perspective, we study
the out-of-sample volatility of these optimized
portfolios.

With the asset covariance matrix constructed as
in Equation (3), we proceed to construct the
minimum-volatility portfolio using MVO. As
shown by Grinold and Kahn (2000), the analytic
formula for the minimum-volatility fully invested
portfolio (wλ) is given by

wλ = �̃��
−1
λ 1

1′�̃��−1
λ 1

. (4)

where 1 is an N × 1 vector with 1 for every entry,

and �̃��
−1
λ is the inverse of the asset covariance

matrix.

As a concrete example, we select a universe of the
100 largest US equities as of 31-Mar-2016, with
complete daily return history going back to the
start of January 1999. We use the first two years of
our sample as the “burn-in” period (for computing
the initial asset covariance matrix); this produces
an out-of-sample testing period spanning 27-Dec-
2000 to 31-Mar-2016.

We directly estimate a family of sample covari-
ance matrices using EWMAwith an HLparameter
that varies from 10 days to 150 days. We apply the
same HL to both volatilities and correlations. At
the start of each day, we form the optimal portfolio
using Equation (4) and observe the out-of-sample
portfolio return over the next day. At the end of
each day, we update our asset covariance matrix
and rebalance the portfolio.

In Figure 1, we plot the out-of-sample volatility
(annualized) of the optimized portfolios as a func-
tion of the HLparameter. We consider three values
of shrinkage intensity. For reference, we also
report the realized volatility of the 1/N portfolio,
which assigns equal weight to every stock. Note
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Figure 1 Out-of-sample volatility versus half-life for
the minimum-volatility fully invested portfolio (con-
taining the largest 100 US stocks). The portfolio is
constructed in one of four ways. The λ = 0 case
uses the sample covariance and mean–variance opti-
mization (MVO). The λ = 1 case uses MVO under
the assumption that all stocks are uncorrelated. The
λ = 0.2 case uses MVO while shrinking the sample
correlation by 20%. For reference, the 1/N portfolio
(equal weighted) is also reported. The out-of-sample
period spanned 27-Dec-2000 to 31-Mar-2016.

that the 1/N portfolio is mean–variance efficient
only under the extreme assumption that all stocks
are uncorrelated and have the same volatility. The
1/N portfolio had a realized volatility of nearly
20% annualized.

Next, we consider the λ = 1 portfolio, which
is optimal under the assumption that all stocks
are uncorrelated but their volatilities are given
by their EWMA estimates. Rather than equally
weighting all stocks, however, now the weights
are inversely proportional to the predicted vari-
ance of each stock. Note that this portfolio has
significantly lower volatility than the 1/N portfo-
lio, demonstrating the benefit of under-weighting
high-volatility stocks.

Next, we consider the λ = 0 portfolio, which is
constructed using the sample covariance matrix.
If the HL parameter is very short (so that the

matrix is ill conditioned), the sample covari-
ance matrix produces the worst performance
(i.e., highest volatility). This type of problematic
behavior has led some to view optimizers as “error
maximizers,” as argued by Michaud (1989). Note,
however, that if the HL parameter is reasonably
long (so that the matrix is reasonably well con-
ditioned), the sample outperforms both the 1/N

portfolio and the λ = 1 portfolio by wide margins.
Hence, portfolio optimization using the sample
correlation (with sufficiently long HL parameter)
is able to successfully exploit asset correlations
to reduce portfolio volatility.

For intermediate values of shrinkage, we obtain
lower volatility than the sample covariance matrix
for any choice of HL parameter. For instance
using λ = 0.2, we produce portfolios that have
lower out-of-sample volatility than those with no
shrinkage. Note that the λ = 0.2 shrinkage inten-
sity is not optimal across the HL spectrum. In
general, we find more aggressive shrinkage is
warranted for small HL parameters, while less
aggressive shrinkage is suitable for longer HL
parameters.

Forecasting error of asset-pair portfolios

In this section, we study the risk-forecast error
for portfolios containing two correlated assets.
We first consider the error from a theoretical per-
spective. We then discuss how these errors can be
measured empirically. Finally, we present empiri-
cal results using observations from the equity and
fixed income markets.

Theoretical results. Consider two assets, X and
Y , with mean-zero returns, true variance of 1, and
true correlation ρ. Let x ∼ N(0, 1) denote the
return of Asset X. Similarly, let ε ∼ N(0, 1) be
a randomly drawn return, also from a standard
normal distribution. We assume that x and ε are
independent. The return of the Asset Y can be
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described by the return-generating process

y = ρx +
√

1 − ρ2ε. (5)

It can be easily verified that y ∼ N(0, 1) follows
a standard normal distribution with correlation ρ

to variable x.

Now consider a two-asset long/short portfolio
with return given by R = x−y. The true portfolio
variance is

σ2
ρ = 2(1 − ρ). (6)

In practice, the true variances and correlations are
unobservable and must be estimated using a finite
window of realized returns. While EWMA is typ-
ically used in practice to estimate variance, for
simplicity we consider a finite look-back window
containing τ periods, assigning equal weight to
each period. To convert between HL parameter
and τ, we use the approximation that the effec-
tive number of observations is roughly three times
the HL parameter. In other words, an HL of 21
days has roughly the same sampling error as a
look-back window of 63 days.

The estimated variance for Asset X is

σ̂2
X = 1

τ

∑
t

x2
t , (7)

with a similar expression σ̂2
Y holding for Asset Y .

The sample correlation is given by the usual
expression,

ρ̂ =
(

1

σ̂Xσ̂Y

)
1

τ

∑
t

xtyt. (8)

Next, we shrink the sample correlation toward
zero,

ρ̂λ = (1 − λ)ρ̂, (9)

where λ is the shrinkage intensity (which varies
from 0 to 1). The estimated variance of the asset-
pair portfolio using the shrunk correlations is

given by

σ̂2
τρλ = σ̂2

X + σ̂2
Y − 2ρ̂λσ̂Xσ̂Y . (10)

Hence, the estimated variance depends on three
parameters: (1) window length τ, (2) true corre-
lation ρ, and (3) shrinkage intensity λ.

We define the forecast error δτρλ as the differ-
ence between the estimated variance and the true
variance, normalized by the true variance, i.e.,

δτρλ = σ̂2
τρλ − σ2

ρ

σ2
ρ

. (11)

The root-mean-squared (RMS) error is given by

ετρλ =
√

E[δ2
τρλ], (12)

which represents the “typical” magnitude of the
forecast error, expressed as a fraction of the true
variance.

In Appendix A, we derive an analytic expression
for the RMS error ετρλ. In what follows, we apply
this result to study how RMS error depends on the
three parameters τ, ρ, and λ.

In Figure 2, we plot RMS error ετρλ versus shrink-
age intensity λ. Panel (A) considers four values
of the true correlation ρ (0.0, 0.1, 0.3, and 0.5)
and uses τ = 252 for the length of the estima-
tion window (corresponding to one year of daily
returns). This is roughly in line with the number of
effective observations for predicting correlations
in practice.

Several salient features of Figure 2(A) are worth
highlighting. First, as the shrinkage intensity goes
to zero, we note that RMS error converges to the
same level for all values of correlation. The limit-
ing value is given by

√
2/τ, which is the standard

error for a variance forecast estimated from a time
series of τ return observations.

Second, when the true correlation is zero (solid
gray line), estimation error is minimized by fully
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(a)

(b)

Figure 2 Analytic results for root-mean-squared
(RMS) error versus shrinkage intensity for asset-pair
portfolios. Panel (A) is for a 252-day window length,
using four different values of true correlation. Panel
(B) is for a true correlation of 0.30, using four different
window lengths.

shrinking the estimated correlations to zero. This
is not surprising, since full shrinkage in this
case eliminates estimation error in the correla-
tion. A crucial point, however, is that the actual
reduction in error is quite small. For instance, the
RMS error for no shrinkage (λ = 0) is 8.9%,
versus 6.3% for full shrinkage (λ = 1). Since
ρ = 0 represents the “best-case scenario” for
shrinkage, this shows that in practice any potential
improvement in the accuracy of risk forecasts due
to shrinkage will be extremely small. Moreover,
since in reality we never know the true underly-
ing correlation, even this small benefit cannot be
fully captured in practice.

Third, we see that shrinkage induces large RMS
errors when the true correlations are non-zero.
Moreover, the magnitude of these errors rises
dramatically as the correlation increases. For
instance, using shrinkage intensity λ = 0.5, we
find in Figure 2(A) an RMS error of 9.1% for
ρ = 0.10, which rises to 22.8% for ρ = 0.30, and
50.9% for ρ = 0.50. Furthermore, note that RMS
error is exacerbated as the shrinkage intensity
increases.

In Panel (B) of Figure 2, we plot RMS error versus
shrinkage intensity for true correlation ρ = 0.30
using four different look-back windows (21, 63,
252, and infinity). The finite look-back windows
correspond to 1m, 3m, and 12m of daily observa-
tions. Two features are worth highlighting. First,
we note that in the limit that the sampling error
goes to zero (τ → ∞), the RMS error is strictly
linear in the shrinkage intensity. Moreover, for
finite τ, the RMS error is approximately linear in
shrinkage intensity for large values of λ.

This effect is explained by shrinkage-induced
biases. The bias is computed by taking the
expected value of the forecast error, i.e., E[δτρλ].
This is easily obtained by substituting the esti-
mated variance given by Equation (10) and the
true variance given by Equation (6) into the def-
inition of forecast error in Equation (11). Taking
expectations, we find the resulting bias is given
by

E[δτρλ] = λρ

1 − ρ
. (13)

In the limit that (τ → ∞), sampling error van-
ishes and the bias becomes identical to the RMS
error. This explains why the (τ → ∞) result
in Figure 2(B) is strictly linear in λ. For any
finite τ, sampling error adds noise on top of the
bias, further increasing the RMS error. Neverthe-
less, for look-back windows of reasonable length
(e.g., τ = 252), we find that Equation (13) is an
excellent approximation to RMS error for wide
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ranges of correlation and shrinkage intensity. For
instance, using λ = 0.5, ρ = 0.5, and τ = 252,
the bias is 0.50, whereas the RMS error is 0.51.
In these cases, RMS error is dominated by bias.

The second observation from Figure 2(B) is that
for short look-back windows (e.g., τ = 21),
there is a clear (though shallow) minimum. For
instance, using a 21-day window, the RMS error
is minimized at a shrinkage intensity of λ = 0.16.
Note, however, that the actual reduction in error
(compared to no shrinkage) is miniscule. For
instance, even with τ = 21, the RMS error for no
shrinkage (λ = 0) is 30.9%, versus and 29.6% at
the optimal shrinkage intensity. Moreover, a look-
back window of 21 days is unreasonably short for
purposes of estimating correlations, so in practice
any benefit would be even smaller.

Interestingly, we find that for any finite τ, RMS
error is always minimized for a non-zero shrink-
age intensity. However, two key effects occur
as the window length increases: (1) the optimal
shrinkage intensity converges to zero, and (2) the
reduction in RMS error also converges to zero.
For instance, using τ = 252 and ρ = 0.30,
we find that the optimal shrinkage intensity is
λ = 0.02. The RMS error with no shrinkage
(λ = 0) is 8.91%, whereas the RMS error with
optimal shrinkage is 8.86%.

In summary, we find that the reduction in RMS
error due to optimal shrinkage is virtually zero
unless the estimation window is extremely short
and the true correlation is very small. Hence, for
the typical look-back windows used in practice,
the reduction in error is immaterial. Moreover, in
practice, the benefit of shrinkage will always be
less than what is shown here, since in reality, we
do not know the true correlation and so we mea-
sure the optimal shrinkage intensity with error.
Another key takeaway is that excessive shrinkage
may induce large biases in volatility forecasts.

(a)

(b)

Figure 3 Analytic results for root-mean-squared
(RMS) error versus correlation for asset-pair portfo-
lios. Panel (A) is for a shrinkage intensity of 0.50,
and multiple values of window length. Bottom panel
(B) is for an estimation window of 252 periods, with
multiple shrinkage intensities.

In Figure 3, we study the functional dependency
of RMS error on correlation. We use the same
long/short pair portfolio as before (i.e., R = x −
y), but now consider both positive and negative
correlations. Note that the risk of the long/short
pair portfolio with correlation (−ρ) is equivalent
to the risk of a long-only pair portfolio (R = x+y)

with correlation (+ρ).

Panel (A) of Figure 3 reports RMS error for a
shrinkage intensity of λ = 0.50, using four dif-
ferent values for window length τ (21, 63, 252,
and infinity). We first note that all curves have
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a minimum at ρ = 0. This is intuitive, because
only if the true correlation is zero will shrink-
age lead to unbiased forecasts. The most striking
feature of Figure 3(A) is the strong asymmetry
in correlation. This occurs because RMS error is
normalized using the true variance in the denom-
inator, which is smaller for positively correlated
long/short pairs than it is for negatively correlated
pairs.

Also, note that for any value of correlation, RMS
error increases as τ decreases. This is also intu-
itive, since smaller window lengths translate into
higher sampling error.

In Panel (B) of Figure 3, we report RMS error
versus correlation for a window length τ = 252,
using three different values of shrinkage inten-
sity (0.0, 0.5, and 1.0). First, note that with no
shrinkage (λ = 0), RMS error is independent of
correlation. Again, the RMS error in this case is
given by

√
2/τ, consistent with Figure 2(A).

Second the RMS error for full shrinkage (λ = 1)

is typically much greater than for no shrink-
age (λ = 0), except for tiny correlations. For
instance, over the very narrow range of correla-
tions [−0.06, 0.05], full shrinkage outperforms no
shrinkage. For intermediate values of shrinkage
(λ = 0.5), the range over which shrinkage out-
performs is slightly wider [−0.15, 0.10]. Note,
however, that the reduction in RMS error is
exceedingly small, even for zero true correlation.
The most significant feature of Figure 3(B) is that
as the correlation increases, shrinkage induces
large errors in the variance forecasts. For instance,
using ρ = 0.5 and λ = 1, we find an RMS error
exceeding 100%.

Q-statistics. Analysis of RMS error provides
important theoretical insight into the key drivers
of forecasting error, particularly the interplay
among window length, correlation, and shrink-
age intensity. Unfortunately, RMS error relies

on knowing the true correlations and volatili-
ties. Clearly, this measure cannot be applied in
practice, where these quantities are unknown.
What is needed is a measure that can be applied
empirically.

The observable quantity that we use as a proxy for
RMS error is the so-called Q-statistic, which was
analyzed by Patton (2011), and further studied by
Menchero and Morozov (2015). The Q-statistic is
defined in terms of standardized portfolio returns
(i.e., z-scores). In particular, let rnt be the return
of portfolio n over period t, and let σ̂nt denote the
start-of-period volatility forecast. The Q-statistic
for this observation is given by

Qnt = z2
nt − ln(z2

nt), (14)

where znt = rnt/σ̂nt . In practice, the Q-statistic is
averaged across N portfolios and T periods, lead-
ing to a composite value: Q = (NT)−1 ∑

nt Qnt .

A critical property of the Q-statistic (derived in
Technical Appendix B) is that it is minimized in
expectation when the true volatility is used to
make every forecast. This opens the possibility
of using the Q-statistic as an observable proxy
for the unobservable RMS error. To apply the Q-
statistic in a reliable fashion, it is important to
have a large number of observations to mitigate
the effects of sampling error.

To develop some intuition behind the Q-
statistic, note that we can interpret z2

nt as an
under-forecasting penalty, whose expected value
becomes large if our volatility forecasts are too
low. Similarly, we can interpret − ln(z2

nt) as an
over-forecasting penalty, which becomes large if
our risk forecasts are too high.

The expected value of the Q-statistic (for perfect
risk forecasts) depends on the return distribution
of the portfolio under consideration. It is easy to
show via simulations that if returns are normally
distributed, the expected value of the Q-statistic
is approximately 2.27. For fat-tailed distributions,
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again assuming perfect forecasts, the expected
value of the Q-statistic is greater than 2.27, and
grows with increasing kurtosis.

In practice, we are less concerned with the
numerical value of the Q-statistic than we are
in differences between Q-statistics for compet-
ing volatility estimates. Let Q(σ̂) denote the
Q-statistic using the estimated volatility σ̂, and let
Q(σ) denote the Q-statistic using the true (unob-
servable) volatility. In Technical Appendix B, we
show that the expected increase in Q-statistic is
given by

E[	Q] = σ2

σ̂2
− ln

(
σ2

σ̂2

)
− 1, (15)

where 	Q ≡ Q(σ̂) − Q(σ). Remarkably, Equa-
tion (15) holds independent of distribution. For
small errors, Equation (15) is essentially symmet-
ric. For instance, if the true volatility is σ = 1.00
and our estimated volatility is either σ̂ = 1.01
or σ̂ = 0.99, the expected increase in the Q-
statistic is approximately 2.0 × 10−4. For large
errors, however, the Q-statistic penalizes under-
forecasting more heavily than over-forecasting.
For instance, if the true volatility is σ = 1.00 and
our estimated volatility is σ̂ = 0.50, the expected
increase in the Q-statistic is 1.61. However, if
the estimated volatility is σ̂ = 2.00, the expected
increase is only 0.64. If we adopt the view that
10% forecasting error is “significant,” this trans-
lates into E[	Q] ≈ 0.02. Hence, a useful rule
of thumb is that a difference of 0.02 in the value
of the Q-statistic is considered a “meaningful”
improvement to the risk forecast.

To help understand the relationship between the
Q-statistic and RMS error, we conduct a numer-
ical simulation. As before, we consider a pair of
assets, each with true volatility σ = 1 and true
correlation ρ. The portfolio goes 100% longAsset
X and 100% short Asset Y . To make a reliable
comparison between the Q-statistics for different
volatility estimates, it is necessary to have a large

number of observations. We simulate one million
returns for each asset using the return-generating
process in Equation (5). In our simulations, we
use Equation (10) to estimate portfolio volatilities
using different window lengths τ and shrinkage
intensities λ.

In Figure 4, we plot the average Q-statistic as a
function of shrinkage intensity. Panel (A) consid-
ers a 252-day window length, with four different
values of correlation. Panel (B) considers a true
correlation of 0.30, with four different window
lengths. Note that the results for infinite look-
back window were not determined by simulation.
In this case, we substitute σ̂2 = 2 − 2ρ(1 − λ)

(a)

(b)

Figure 4 Simulated results for Q-statistic versus
shrinkage intensity for asset-pair portfolios. Panel (A)
is for a 252-day window, using four values of the
“true” correlation. Panel (B) is for a true correlation
of 0.30 with four different look-back windows.
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and σ2 = 2(1 − ρ) into Equation (15) to obtain
an analytic result.

We wish to compare the behavior of RMS error
with the Q-statistic. Note that the parameter set-
tings in Figures 2 and 4 are identical. Comparing
Figure 2(A) with Figure 4(A), we see that qual-
itatively, RMS error and the Q-statistic exhibit
virtually identical behavior. For instance, if the
true correlation is zero (solid gray line), we see
a slight reduction in both RMS error and the
Q-statistic as we increase the shrinkage inten-
sity. As another example, if the true correlation
is 0.50, then both RMS error and the Q-statistic
increase quite dramatically (almost linearly) with
increasing shrinkage intensity.

Figure 2(B) is again qualitatively similar to
Figure 4(B). For instance, using relatively long
windows (e.g., τ = 252), we find that both RMS
error and the Q-statistics increase with increasing
shrinkage intensity. By contrast, for short window
length (e.g., τ = 21), there is an evident benefit
to shrinkage. For instance, with a 21-day window
length, we see from Figure 2(B) that the opti-
mal shrinkage intensity for RMS error is roughly
20%. In Figure 4(B), we see that the Q-statistic
is minimized near a shrinkage intensity of 30%.

In summary, we find remarkable similarity
between Figures 2 and 4. This shows that the
Q-statistic may serve as a viable proxy for the
unobservable RMS error.

Empirical results (Q-statistics). Up to now, all
of our results were based on idealized examples
where the return-generating process was normally
distributed, stationary, and fully specified. In
this section, we apply our concepts to empiri-
cal observations where all of these conditions are
violated.

Our first exercise illustrates how the Q-statistic
can be applied as a tool for calibrating model
parameters. Accurate risk forecasting involves

finding an optimal tradeoff between responsive-
ness and sampling error. Responsive forecasts
employ a short HL parameter to assign more
weight to recent observations, which is desirable
since the recent past is the best indicator of the
immediate future. On the other hand, to mitigate
the effects of sampling error, a long HL parameter
is preferable. The Q-statistic allows us to identify
the optimal tradeoff between these two effects.

As our data set, we take the 20 largest US equities
as of 31-Mar-2016, with complete daily return
history going back to 05-Jan-1993. The first
two years form the burn-in period (for obtaining
our initial volatility estimates), with the out-of-
sample testing period running from 30-Dec-1994
to 31-Mar-2016. We use EWMA with a variable
HL parameter to estimate stock volatility. We then
average the Q-statistic across all 20 stocks over
more than 20 years of daily returns (more than
100,000 total observations).

In Figure 5, we plot the mean Q-statistic of the
individual stocks (solid blue line) as a function
of volatility HL. We see that the curve has a
pronounced minimum near a 20-day HL, indi-
cating that this represents the optimal HL for
risk-forecasting purposes. We round the optimal
HL parameter to one month (21 days). If the HL
parameter is well below 21 days, the forecast
becomes more responsive, but also more noisy,
causing an increase in the Q-statistic. Alterna-
tively, if the HL parameter is well above 21 days,
then sampling error (noise) is reduced, but the use
of “stale” data causes the Q-statistic to rise.

Next, we form stock-pair portfolios where the
weights are inversely proportional to the pre-
dicted stock volatility. This means that each “leg”
of the portfolio has the same stand-alone volatil-
ity (as in our previous simulations). To estimate
the stock volatility, we use the optimal 21-day
HL. To estimate correlations, however, we use
a variable HL. We then compute Q-statistics for
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Figure 5 Empirical results for Q-statistic versus HL
for single stocks and stock pairs. For single stocks
(solid blue line), we varied the volatility HL. For the
stock pairs, we kept the volatility HL constant at 21
days (near optimal), and varied the correlation HL.
The selected stocks were the 20 largest US equities
as of 31-Mar-2016 with complete daily return history
back to 05-Jan-1993. The out-of-sample period spans
30-Dec-1994 to 31-Mar-2016. The average pairwise
correlation between stock pairs was 0.34.

all 190 pair portfolios over 20+ years of daily
returns (roughly one million total observations).
The result is shown by the dashed red line in
Figure 5. The optimal HL in this case is near 60
days (about three months). However, note that the
minimum is extremely shallow. In other words,
using a longer HLparameter for correlations leads
to only a very slight (immaterial) increase in the
Q-statistic. Moreover, the longer correlation HL
leads to a better-conditioned covariance matrix,
which proves useful for portfolio construction.
This analysis provides empirical evidence to
support the view that short HL parameters are
useful to estimate volatilities, whereas longer HL
parameters are preferable for correlations.

In Figure 6, we plot the mean Q-statistic as a func-
tion of shrinkage intensity for the 190 stock-pair
portfolios. As before, we estimate stock volatility
using a 21-day HL, which corresponds to roughly
τσ = 63 effective observations. We estimated the

Figure 6 Empirical results for Q-statistic versus
shrinkage intensity for stock-pair portfolios using
three different correlation HL (effective look-back
windows). For the stock pairs, we kept the volatility
HL constant at 21 days (near optimal), and varied the
correlation HL. The selected stocks were the 20 largest
US equities as of 31-Mar-2016 with complete daily
return history back to 05-Jan-1993. The out-of-sample
period spans 30-Dec-1994 to 31-Mar-2016.

stock correlations using three different HLparam-
eters (7d, 21d, and 84d), which correspond to an
effective number of observations τρ equal to those
in Figure 4(B), (i.e., 21d, 63d, and 252d).

Note that the average pairwise correlation of the
190 pairs was 0.34, close to the correlation of
0.30 used to generate Figure 4(B). Qualitatively,
we see that Figures 6 and 4(B) are very similar.
For instance, using an effective window length
of τρ = 21 days leads to an optimal shrinkage
intensity of 0.30 in both the simulated results of
Figure 4(B) and the empirical results of Figure 6.

While the qualitative behavior is quite similar,
there are some notable differences. First, the mean
Q-statistics in Figure 6 (empirical) are signif-
icantly larger than the corresponding values in
Figure 4(B). Part of the reason for this increase
is that the empirical distribution is fat tailed,
whereas the simulated results are normally dis-
tributed. Another contributing factor is that the
empirical distribution is non-stationary, while the
simulations were stationary.
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Another notable difference is that in Figure 6, all
lines appear to converge to the same value as the
shrinkage intensity approaches 1. By contrast, in
Figure 4(B), the short HL case clearly has a larger
Q-statistic for λ = 1. This is because in Figure 4,
the volatility HL is the same as correlation HL,
whereas in Figure 6 the volatility HL is 21-days
for all curves.

Bias statistics. Another useful measure of risk-
forecasting accuracy is the so-called bias statistic,
which is also defined in terms of z-scores. The bias
statistic B is defined by

B2 = 1

NT

∑
nt

z2
nt. (16)

The bias statistic essentially represents the ratio of
realized risk to predicted risk. In particular, if the
true volatility is used to make every forecast, then
E[B2] = 1. Over-forecasting of risk leads to bias
statistics less than 1, whereas under-forecasting
leads to bias statistics greater than 1.

An advantage of the bias statistic over the Q-
statistic is that the former has a more intuitive
interpretation. A disadvantage of the bias statistic
is that it is less reliable than the Q-statistic for
purposes of evaluating the accuracy of risk fore-
casts. In particular, the bias statistic is subject to
error cancelation. For instance, suppose we over-
forecast risk for six months and under-forecast
risk for the subsequent six months. Measured over
the entire year, the bias statistic may be very close
to 1, but this does not imply that the risk fore-
casts were accurate. By contrast, the Q-statistic
is not susceptible to error cancelation; each fore-
casting error increases the expected value of the
Q-statistic.

Empirical results (bias statistics). Next, we
explicitly consider the biases in asset-pair port-
folios induced by correlation shrinkage. We
first simulate returns for two assets with equal
volatility and true correlation ρ, using the same

joint-normal assumptions as before. We con-
sidered two values for the true correlation: an
“intermediate” correlation (ρ = 0.34) which is
typical of individual stocks, and a “high” corre-
lation ρ = 0.87 that is typical of a set of bond
indices (described below). Asset weights were
inversely proportional to the estimated volatil-
ity using a 21-day HL. Hence, within estimation
error, the two legs of our portfolios have equal
stand-alone volatility.

In Panel (A) of Figure 7, we plot simulated results
for the bias statistics of the pair portfolios as a
function of shrinkage intensity. The HL used to
estimate correlations was 84 days (correspond-
ing to an effective window size of 252 days).
For the long-only (LO) portfolios, we see that
shrinkage causes under-prediction of risk. Fur-
thermore, the greater the correlation, the greater
the bias. Note that the theoretical maximum bias
is bounded by

√
2, which occurs for full shrinkage

of two perfectly correlated assets.

By contrast, for long/short (LS) pairs, shrinkage
causes significant over-forecasting of portfolio
risk. Again, the biases are more severe for the
highly correlated asset pairs. In this scenario, the
bias statistic can reach as low as zero. This occurs
when the assets are perfectly correlated, which
leads to a true volatility of zero.

In Panel (B) of Figure 7, we plot the bias statis-
tics for long/short and long-only pair portfolios
of stocks and bonds. Again, the weights were
inversely proportional to the estimated volatil-
ity, which was computed using a 21-day HL. To
form the stock-pair portfolios, we used the same
top 20 US stocks considered in Figure 5 (whose
average correlation was 0.34). The out-of-sample
period spanned 30-Dec-1994 to 31-Mar-2016.
We considered all 190 combinations of stock-
pair portfolios. Note that the empirical biases
for the stock-pair portfolios are extremely similar
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(a)

(b)

Figure 7 Bias statistic versus shrinkage intensity for
long-only (LO) and long/short (LS) asset pairs. Panel
(A) is for joint-normal simulated data in which both
assets are assumed to have the same volatility and true
correlation of 0.34 or 0.87. In Panel B, we present
empirical results for stock pairs (mean correlation
0.34) and bond pairs (mean correlation 0.87). The out-
of-sample period for stocks was from 30-Dec-1994 to
31-Mar-2016, whereas for bonds the period spanned
23-Nov-2004 to 05-Jan-2018. In both Panel (A) and
Panel (B), an 84d HL (252d effective window) was
used to estimate correlations and asset weights were
inversely proportional to the estimated volatility using
a 21d HL (63d effective window).

to the simulated biases in Figure 7(A) using a
correlation of 0.34.

To form our bond-pair portfolios, we took
20 fixed income indices derived from the

Bloomberg-Barclays US Aggregate Bond Index.
In particular, we considered various carve-outs
of the index, such as US Treasuries (of various
maturity buckets), the US Aggregate with vari-
ous quality/maturity buckets, US Agency bonds,
and MBS. The average correlation among these
190 possible bond-index pairs was 0.87. Again,
we see that the empirical biases in Figure 7(B)
match up very closely to the simulated biases in
Figure 7(A).

Summary

Shrinking correlations toward zero—either explic-
itly or implicitly—is a common practice in many
financial risk model applications. In this paper, we
studied the impact of such shrinkage on the accu-
racy of risk forecasts for asset-pair portfolios. We
found that while shrinkage may be helpful in port-
folio optimization, there is typically little benefit
to shrinkage for risk-forecasting purposes. In fact,
for any reasonable choice of HL parameter, the
optimal shrinkage intensity is close to zero and
we find that the benefit due to optimal shrinkage
is immaterial. However, if the shrinkage intensity
is too high—as is often the case in practice—
shrinkage may result in large errors (biases) in
volatility forecasts. Hence, we conclude that for
risk-forecasting purposes, estimated correlations
should not deviate appreciably from the sample
correlation.

Appendix A: Derivation of RMS error
formula

In this Appendix, we derive the formula for the
root-mean-square (RMS) error of the variance
estimate for a long/short portfolio of two assets
(X, Y) with correlation ρ. The portfolio return is
R = x − y, where x and y each has a standard
normal distribution.

The error δτρλ is defined by Equation (11). Substi-
tuting Equation (10) into Equation (11), the error
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may be written as

δτρλ = 1

σ2
ρ

[A + B + C − σ2
ρ], (A1)

where σ2
ρ = 2(1 − ρ) is the true variance of the

portfolio, A is the sample variance of X,

A ≡ 1

τ

∑
t

x2
t , (A2)

τ is the number of periods in the sample, B is the
sample variance of Y ,

B ≡ 1

τ

∑
t

y2
t , (A3)

and C is the off-diagonal covariance term,

C ≡ −2(1 − λ)

τ

τ∑
t=1

xtyt, (A4)

where λ is the shrinkage intensity for the correla-
tion. Hence, the mean-squared error is

E[δ2
τρλ] = 1

σ4
ρ

E[A2 + B2 + C2 + σ4
ρ

+ 2AB + 2AC − 2Aσ2
ρ

+ 2BC − 2Bσ2
ρ − 2Cσ2

ρ]. (A5)

We now directly compute the expected values of
each term. For the first term, we have

E[A2] = 1

τ2

τ∑
t=1

τ∑
t′=1

E[x2
t x

2
t′ ]. (A6)

Note that if t 	= t′, then x2
t and x2

t′ are indepen-
dent, implying E[x2

t x
2
t′ ] = E[x2

t ]E[x2
t′ ], which

gives E[x2
t x

2
t′ ] = 1. If t = t′, then we have

E[x4
t ] = 3, which is just the kurtosis of a standard

normal distribution. Hence, the general expres-
sion is E[x2

t x
2
t′ ] = 1 + 2δtt′ , where δtt′ is the delta

function, which is equal to 1 if t = t′, and is

equal to zero otherwise. Substituting this result
into Equation (A6) gives

E[A2] = 1

τ2

τ∑
t=1

τ∑
t′=1

(1 + 2δtt′). (A7)

Carrying out the sum over t′, we obtain

E[A2] = 1

τ2

τ∑
t=1

(τ + 2). (A8)

Finally, carrying out the sum over t gives

E[A2] = τ + 2

τ
. (A9)

The second term is derived in identical fashion,
which leads to

E[B2] = τ + 2

τ
. (A10)

The next term is

E[C2] = 4(1 − λ)2

τ2

τ∑
t=1

τ∑
t′=1

E[xtytxt′yt′ ]. (A11)

To compute this term, we write the standard
expression for two correlated standard normal
random variables, i.e., yt = ρxt + √

1 − ρ2εt ,
where εt follows a standard normal distribu-
tion and is independent of xt . Substituting these
expressions into Equation (A11), we obtain

E[C2] = 4(1 − λ)2

τ2

τ∑
t=1

τ∑
t′=1

E
[
xt

(
ρxt

+
√

1 − ρ2εt

)
xt′

(
ρxt′ +

√
1 − ρ2εt′

)]
.

(A12)

We have already shownE[x2
t x

2
t′ ] = 1+2δtt′ . Next,

we must compute E[x2
t xt′εt′ ]. Since εt′ is inde-

pendent, we have E[x2
t xt′εt′ ] = E[x2

t xt′ ]E[εt′ ],
which is equal to zero. Finally, we must com-
pute E[xtεtxt′εt′ ]. If t 	= t′, then all terms are
independent, which gives zero. If t = t′, we
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have E[x2
t ε

2
t ] = E[x2

t ]E[ε2
t ], which is equal to

1. Hence, the general expression is given by
E[xtεtxt′εt′ ] = δtt′ . Plugging these expressions
into Equation (A12), we obtain

E[C2] = 4(1 − λ)2

τ2

τ∑
t=1

τ∑
t′=1

[ρ2(1 + 2δtt′)

+ (1 − ρ2)δtt′ ]. (A13)

Carrying out the sums, we find

E[C2] = 4(1 − λ)2(τρ2 + ρ2 + 1)

τ
. (A14)

Next, we must evaluate the cross-terms,

E[AB] = 1

τ2

τ∑
t=1

τ∑
t′=1

E[x2
t y

2
t′ ]. (A15)

We use the return-generating process to express
y2

t′ in terms of xt′ and εt′ , i.e.,

y2
t′ = (

ρxt′ +
√

1 − ρ2εt′
)2

. (A16)

Substituting Equation (A16) into Equation (A15),
and using E[x2

t x
2
t′ ] = 1 + 2δtt′ , E[x2

t ε
2
t′ ] = 1, and

E[x2
t xt′εt′ ] = 0, we find

E[AB] = 1

τ2

τ∑
t=1

τ∑
t′=1

[ρ2(1 + 2δtt′) + (1 − ρ2)].

(A17)

Carrying out the sums, we obtain

E[AB] = 1 + 2ρ2

τ
. (A18)

The next cross-term is

E[AC] = −2(1 − λ)

τ2

τ∑
t=1

τ∑
t′=1

E[x2
t xt′yt′ ]. (A19)

Substituting yt′ = ρxt′ + √
1 − ρ2εt′ into Equa-

tion (A19) and carrying out the algebra, we

find

E[AC] = −2(1 − λ)

(
ρ + 2ρ

τ

)
. (A20)

By inspection, E[BC] = E[AC], and E[A] =
E[B] = 1. Finally,

E[C] = −2ρ(1 − λ). (A21)

Substituting the 10 expectation values into Equa-
tion (A5) and using σ2

ρ = 2(1 − ρ), we find after
a bit of algebra,

E[δ2
τρλ] = a0 + a1(1 − λ) + a2(1 − λ)2, (A22)

where the constant term is given by

a0 = 1

(1 − ρ)2

(
ρ2 + 1 + ρ2

τ

)
, (A23)

the linear coefficient is given by

a1 = −2

(1 − ρ)2

(
ρ2 + 2ρ

τ

)
, (A24)

and the quadratic coefficient is given by

a2 = a0. (A25)

Finally, taking the square root of Equation (A22),
we obtain the RMS error ετρλ, which is Equa-
tion (12) of the main text. To find the optimal
shrinkage intensity λ∗, we take the derivative
of Equation (A22) and set it equal to zero. The
result is

λ∗ = (1 − ρ)2

1 + ρ2 + τρ2
. (A26)

It is easily verified that the second derivative is
everywhere positive, so Equation (A26) repre-
sents the global optimal shrinkage intensity that
minimizes mean-squared error.

Appendix B: Q-statistics

Let r be the portfolio return and let σ̂ denote the
predicted start-of-period volatility. Express the
out-of-sample return as a z-score, i.e., z = r/σ̂.
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The Q-statistic for the return observation is
defined in terms of the z-score,

Q = z2 − ln(z2). (B1)

We first show that the Q-statistic is minimized in
expectation when the true volatility is used for
the forecast. We assume that returns are mean
zero. This is an excellent approximation for daily
stock returns and still quite valid even for monthly
returns. The expected value of the Q-statistic is
given by

E[Q] = E

[
r2

σ̂2

]
− E

[
ln

(
r2

σ̂2

)]
. (B2)

Let σ2 ≡ E[r2] denote the true portfolio vari-
ance (returns are assumed mean zero). Hence,
Equation (B2) can be rewritten as

E[Q] = σ2

σ̂2
− 2E[ln(r)] + 2 ln(σ̂). (B3)

The derivative of E[Q] with respect to σ̂ is given
by

dE[Q]
dσ̂

= −2σ2

σ̂3
+ 2

σ̂
. (B4)

Let σ̃ denote the value σ̂ of that produces an
extremum. This is found by setting the derivative
equal to zero, which gives

σ̃2 = σ2. (B5)

Note that the second derivative evaluated at the
extremum is equal to 4/σ̃2. Since the second
derivative is positive, this proves that E[Q] is
minimized when we use the true volatility for the
forecast.

Next, we solve for the expected increase in the
Q-statistic due to forecasting error. Let σ2 denote
the true variance of the portfolio, and let σ̂2 be
the estimated variance. The expected value of the

Q-statistic using the true variance is given by

E[Q(σ)] = 1 − E

[
ln

(
r2

σ2

)]
, (B6)

where we have used the fact that E[r2/σ2] = 1.
Similarly, the expected value of the Q-statistic
using the estimated variance is given by

E[Q(σ̂)] = E

[(
r2

σ2

σ2

σ̂2

)]
− E

[
ln

(
r2

σ2

σ2

σ̂2

)]
,

(B7)

which reduces to

E[Q(σ̂)] = σ2

σ̂2
− E

[
ln

(
r2

σ2

)
+ ln

(
σ2

σ̂2

)]
.

(B8)

Letting 	Q ≡ Q(σ̂) − Q(σ), we find

E[	Q] = σ2

σ̂2
− ln

(
σ2

σ̂2

)
− 1. (B9)

Note that this result is independent of distribution.
Define the error in variance

δ = σ̂2 − σ2

σ2
. (B10)

Equation (B9) may be written as

E[	Q] = 1

1 + δ
+ ln(1 + δ) − 1. (B11)

Next, we do a Taylor Series expansion, keeping
terms second order in δ. The result is

E[	Q] = δ2

2
. (B12)

Hence, the expected increase in Q-statistic is pro-
portional to the mean-squared error (MSE). For
small values of δ, E[	Q] is symmetric in δ.
However, for larger errors the higher-order terms
become important. Note that the penalty is asym-
metric. If we under-forecast volatility by 50%,
we find E[	Q] = 1.61, whereas if we over-
forecast by 50%, we obtain E[	Q] = 0.26. If we
over-forecast by 100%, we get E[	Q] = 0.64.
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