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ATTRIBUTION OF EX-POST REALIZED SHARPE RATIO
TO THE PREDICTABILITY OF THE EX-ANTE

FORECAST RETURN AND RISK
Masahito Shimizua

We propose to use an attribution formula that enables the ex-post realized Sharpe ratio to
be decomposed into realized market conditions, ex-ante predictability of the returns, risk
magnitude, and risk factors. We compare the predictability of the ex-ante return and ex-
ante risk directly, quantitatively identifying the main source of the reduction of the Sharpe
ratio using the attribution. Furthermore, we use excess Sharpe ratio attribution analysis
to simultaneously evaluate the qualities of the portfolio and benchmark. We additionally
provide numerical examples of the attributions using sector indices.

1 Introduction

Improving the Sharpe ratio is an important goal
of sponsors and portfolio managers. This ratio is
based on portfolio performance under an ex-post
realized return distribution. However, investors
construct portfolios based on ex-ante forecast
return distributions for investable assets at the
beginning of an investment period by using the
mean–variance approach. As such, it is natu-
ral that the ex-ante forecast return distribution
differs from the ex-post realized future return
distributions. Investors recognize that attribution
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analysis for past investments is important for
their future investments. Therefore, we need to
attribute the Sharpe ratio to the ex-ante forecast
return distribution after the investment period.

In this study, we consider a one-time investment
in n risky assets, where the expected returns are
distributed according to an n-dimensional nor-
mal distribution. The investment maximizes the
Sharpe ratio using the mean–variance approach.

First, we define the predictability, which is a mea-
sure of the ex-ante forecast return distribution
that ranges from −1 to 1. The realized Sharpe
ratio increases with predictability, which is dis-
tinct from realized market conditions. Second, we
decompose the realized Sharpe ratio into market
conditions, predictability of the returns, and risk
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predictability, which we further decompose into
the predictability of the risk magnitude and risk
factors.

For evaluating the forecast, Grinold and Kahn
(1999) introduce the information coefficient (IC),
defining it as the correlation of each forecast
with its actual outcome. If the IC is the same
for all forecasts, Grinold and Kahn (1999) pro-
pose the fundamental law of active management
to show the information ratio is the product of the
IC and breadth of the square root of the strat-
egy. The breadth is defined as the number of
independent forecasts that generate exceptional
returns per year for an investor. They then analyze
the relationship between the risk-adjusted perfor-
mance measurement and measurements during
the investment process. Even if an investor has an
ex-ante forecast return that is close to the ex-post
one, her or his portfolio not necessarily achieves a
high Sharpe ratio. An ex-ante forecast risk is also
needed, which has an important role in portfolio
construction processes using the mean–variance
approach.

Regarding Sharpe ratio attribution analysis,
Steiner (2011) decomposes the Sharpe ratio of a
portfolio into risk weights, diversification effects,
and asset Sharpe ratios. The risk weight is defined
as wiρi,pσi/σp, where wi is the weight of the ith
asset in portfolio p, ρi,p the asset covariance with
the overall portfolio, σi the volatility of the asset,
andσp the volatility of the portfolio. However, ex-
ante forecast returns and risk lead to the weight
of ith asset of the portfolio in the mean–variance
approach. It is important to analyze the sources of
the input that leads the portfolio. As such, we need
a Sharpe ratio decomposition that directly uses the
forecast returns and risk instead of weights.

The first contribution of this paper is proposing an
ex-post realized Sharpe ratio attribution to ex-ante
forecast returns and risk. The second contribution
is providing the formula for the attribution. To this

end, we decompose the risk predictability into the
magnitude of the risk and risk factors. This attri-
bution formula enables us to compare return and
risk predictabilities, in a quantitative way. The
third contribution is identifying the excess Sharpe
ratio attribution against a given benchmark using
the benchmark portfolio’s predictability of the
implied returns forecast. As a result, we find the
relative strength of the optimal portfolio against
the benchmark, as well as the absolute strengths
of the portfolio and benchmark. Consequently,
our attribution analysis can be applied to diverse
situations to derive rich information.

We here illustrate a simple example of the Sharpe
ratio attribution, which we discuss details in the
subsequent sections. We assume three investable
assets: A, B, and C. We assume Asset A has ex-
post returns of rA = 6%, Asset B of rB = 4%,
and Asset C of rC = 1%. Regarding their ex-
post risks of returns, the three assets have the
ex-post standard deviations σA = 8%, σB = 8%,
and σC = 2%, the returns of Assets A and B
have the correlation ρAB = 0.6, the returns of
Assets A and C are independent, and the returns
of Assets B and C are also independent. Given the
above return distribution, we construct the opti-
mal portfolio, which is 25% long on Asset A, 3%
long on Asset B, and 72% long on Asset C. The
optimal portfolio has a maximum Sharpe ratio
of 0.90. Assume an investor who has a perfect
ex-ante return forecast and an imperfect ex-ante
risk forecast. The investor forecasts that Asset A
has the ex-ante return of rA = 6%, Asset B of
rB = 4%, and Asset C of rc = 1%. Additionally,
the investor forecasts the ex-ante standard devi-
ations of σA = 10%, σB = 6%, and σC = 2%
while pairs of returns are independent. However,
the investor must construct the optimal portfolio
from her or his ex-ante forecast return distribu-
tion using the mean–variance approach as 14%
long on Asset A, 26% long on Asset B, and 59%
long on Asset C. This optimal portfolio achieves
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a Sharpe ratio of 0.79 under the ex-post realized
return distribution. The optimal portfolio delivers
a Sharpe ratio 87% of the maximum Sharpe ratio
of the optimal portfolio from the ex-post real-
ized distribution. We first decompose the realized
Sharpe ratio of the optimal portfolio (0.79) into
the product of the realized market condition of
0.90, which is the achievable maximum Sharpe
ratio by an investor and into the predictability of
the ex-ante forecast for 0.87 in this case, based
on Shimizu (2017). Additionally, we decompose
the predictability of the ex-ante forecast into a
predictability of the ex-ante return forecast of
1.0 and into a predictability of the ex-ante risk
forecast of 0.87. It is natural that the predictabil-
ity of the ex-ante return forecast is 1.0 because
the investor has perfect return forecasts. Further-
more, we decompose the risk predictability of
0.87 into a predictability of the magnitude of the
risk of almost 1.0 and into a predictability of the
risk factors of 0.82. From the above example,
the realized Sharpe ratio reduction is caused by
the weak risk predictability despite the perfect
return predictability.

This remainder of article is organized as fol-
lows. In Section 2, we review the formulation
of our framework in accordance with Shimizu
(2017). We first calculate the Sharpe ratio for
which the optimal portfolio, based on the ex-ante
forecast returns and risk using mean–variance
approach, achieves under the ex-post realized
returns and risk. To this end, we investigate
what returns under the given risk lead the opti-
mal portfolio, which is identical to the optimal
portfolio based on the given returns and another
given risk, using the mean–variance approach
(Theorem 1). Consequently, we determine the
formula that expresses the Sharpe ratio that the
optimal portfolio, based on the ex-ante forecast
returns and risk, achieves under ex-post realized
returns and risk. From these results, in Section
3, we determine that the ex-post realized Sharpe

ratio is attributed to the realized market condi-
tions, predictability of returns, predictability of
risk magnitude, and predictability of risk factors.
We provide numerical examples of the attribu-
tion analysis using an investment of 10 weekly
S&P sector total return indices in Section 4. In
Section 5, we discuss the excess Sharpe ratio attri-
bution against a given benchmark. Assuming the
implied return forecast of the benchmark portfo-
lio, we decompose the excess Sharpe ratio into the
effect of the predictability of the return and that
of the predictability of the risk. Additionally, we
give numerical examples for the excess Sharpe
ratio attribution analysis, assuming that the opti-
mal portfolio of the investor is the equal weighted
portfolio and the benchmark portfolio is the mar-
ket weight one. We thus obtain rich information
from the attribution analysis. Finally, we discuss
the implications for practical investment actions
and the need for further research in Section 6.
Appendixes showing the detailed derivations are
also provided.

2 Formulation

We here present the formulation of our frame-
work in accordance with Shimizu (2017) by
considering a one-period investment in a non-
leveraged long/short portfolio. We have n risky
assets and construct the portfolio using the mean–
variance approach without leverage to maximize
the expected Sharpe ratio. For simplicity, we
assume a constituent with infinitely divisible
units in the portfolio and trade without friction.
“Returns” refer to the excess returns with respect
to the risk-free one. We assume the returns of
the n risky assets behave according to an n-
dimensional normal distribution, N(r,�), where
r is an n-dimensional vector of the returns of risky
assets and � is an n × n covariance matrix of the
returns. We also assume the covariance matrix of
the n-dimensional normal distribution has a full
rank.
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Suppose that an investor forecasts that the n risky
assets achieve the n-dimensional return vector rF
and the returns have an n × n covariance matrix
�F in the future investment period. This means
the investor takes the ex-ante forecast return dis-
tribution N(rF , �F) as an n-dimensional normal
distribution at the beginning of the investment
period, where rF is an n-dimensional vector of the
ex-ante forecast returns of risky assets and �F the
n×n covariance matrix of the ex-ante forecast risk
of returns. Additionally, assume that the n risky
assets achieve the n-dimensional return vector rR
and returns have the n × n covariance matrix �R

during the period. This means the n risky assets
behave according to an ex-post realized return dis-
tribution N(rR, �R) as a n-dimensional normal
distribution during the period, where rR is an n-
dimensional vector of the ex-post realized returns
of the risky assets and �R is the n×n covariance
matrix of the ex-post realized risk of the returns.
While, we do not have perfect information about
the future, it is natural that rF and �F are not
identical to rR and �R, respectively.

From the assumption of the ranks of covariance
matrices �F and �R, the properties of linear alge-
bra means we can find the orthonormal n × n

matrices KF and KR such that they diagonalize
�F and �R respectively based on Shores (2018):

K−1
F �FKF = σ2

F , K−1
R �RKR = σ2

R, (1)

where σF and σR are the n×n diagonal matrices:

σF ≡
⎛
⎜⎝

σF(1) 0
. . .

0 σF(n)

⎞
⎟⎠,

σR ≡
⎛
⎜⎝

σR(1) 0
. . .

0 σR(n)

⎞
⎟⎠,

(2)

σF(i) and σR(i) i = 1, . . . , n are the diagonal
elements of the matrices, and X−1 denotes the

inverse matrix of X. KF is the orthonormal matrix
and contains n column vectors kF (i), i = 1, . . . , n

that are n-dimensional and the ex-ante forecast
risk factors. Similarly, KR is the orthonormal
matrix and contains n column vectors kR(i), i =
1, . . . , n that are n-dimensional and the ex-post
realized risk factors. σF(i) expresses the ex-ante
forecast risk of the i-th ex-ante forecast risk factor
kF (i) and σF is the diagonal matrix of the ex-ante
forecast risk. Similarly, σR(i) expresses the ex-
post realized risk of the i-th ex-post realized risk
factor kR(i) and σR is the diagonal matrix of the
ex-post realized risk.

Let w = (w1, . . . , wn)
′ be an n-dimensional vec-

tor of the portfolio weights of the risky assets,
where x′ denotes the transposition of x. For a
given return distribution N(r,�), we find the
weight vector w0 of the optimal portfolio as fol-
lows, which achieves the maximum Sharpe ratio
if e′�−1r is positive, where e ≡ (1, . . . , 1)′ (see
Appendix 1):

w0 = �−1r

e′�−1r
. (3)

From (3), n-dimensional vector of the portfolio
weights of the risky assets wx = �−1

x rx/e
′�−1

x rx
is the optimal portfolio under return distribution
N(rx, �x) or the optimal portfolio, which is based
on return distribution N(rx, �x), where rx is the
n-dimensional return vector and

∑
x the n × n

covariance matrix of the returns.

For a discussion on the relationship between an
optimal portfolio under ex-ante forecast distribu-
tion N(rF , �F) and the optimal portfolio under
ex-post realized distribution N(rR, �R), we intro-
duce an n × n matrix � and call it risk-basis
transformation matrix:

� ≡ σRK−1
R KFσ−1

F , (4)

where � has a function of coordinate conver-
sion by term K−1

R KF , which transforms a vector
expressed in the space that spans ex-ante forecast
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risk factor vectors kF (1), . . . , kF (n) to a vector
expressed in the space that spans ex-post realized
risk factor vectors kR(1), . . . , kR(n). Addition-
ally, � converts given values to other values by
σ−1

F and σR, where the former values per the
ex-ante forecast risks are identical to the latter val-
ues per the ex-post realized risks. Therefore, we
call the n-dimensional vector KRσR�σ−1

F K−1
F rF

“the forecast return vector transformed by the
risk factors.” Note that K−1

F rF is the ex-ante
forecast factor return vector and σ−1

F K−1
F rF is

the ex-ante forecast factor Sharpe ratio vector.
From (3), we obtain optimal portfolio wF =
�−1

F rF/e′�−1
F rF , which achieves the maximum

Sharpe ratio under the ex-ante forecast return
distribution N(rF , �F). Therefore, we posit The-
orem 1 (see Appendix 2).

Theorem 1:

Optimal portfolio wF , which is based on ex-
ante forecast return distribution N(rF , �F), is
identical to optimal portfolio w1, which based
on return distribution N(KRσR�σ−1

F K−1
F rF , �R)

and whose parameters are the forecast return vec-
tor transformed by risk factorsKRσR�σ−1

F K−1
F rF

and ex-post realized covariance matrix �R.

We denote SR(rF , �F | rR, �R) as the ex-
post realized Sharpe ratio that optimal port-
folio from ex-ante forecast return distribution
N(rF , �F) achieves under the ex-post realized
return distribution N(rR, �R). From Theorem 1,
SR(rF , �F | rR, �R) is identical to the Sharpe
ratio that the optimal portfolio under return
distribution N(KRσR�σ−1

F K−1
F rF , �R) achieves

under return distribution N(rR, �R). Then, we
have the Property 1 (see Appendix 3).

Property 1:

SR(rF , �F | rR, �R)

= ‖σ−1
R K−1

R rR‖
(

�σ−1
F K−1

F rF

‖�σ−1
F K−1

F rF‖ , g

)
, (5)

where

� ≡ σRK−1
R KFσ−1

F , g ≡ σ−1
R K−1

R rR

‖σ−1
R K−1

R rR‖ ,

(6)

where (x, y) is the inner product of vectors x and
y and ‖x‖ = √

(x, x) the norm of x.

Note that K−1
R rR is the ex-post realized fac-

tor return vector and σ−1
R K−1

R rR the ex-post
realized factor Sharpe ratio vector. Therefore,
quantity ‖σ−1

R K−1
R rR‖ can be seen as a magni-

tude of the ex-post realized factor Sharpe ratios.
Indeed, it represents the absolute value of the
market condition over the investment period.
Additionally, g ≡ σ−1

R K−1
R rR/‖σ−1

R K−1
R rR‖ is

the normalized ex-post realized factor Sharpe
ratio vector. Conversely, σ−1

F K−1
F rF is the ex-ante

forecast factor Sharpe ratio vector. Therefore,
�σ−1

F K−1
F rF is the transformed ex-ante forecast

factor Sharpe ratio vector by �.

From (5), the ex-post realized Sharpe ratio
SR(rF , �F | rR, �R) that the optimal portfolio
from the ex-ante forecast return distribution
achieves is the product of the magnitude of ex-
post realized factor Sharpe ratios and the inner
product. Additionally, both vectors in the inner
product are normalized, so the value of the inner
product is a number between −1 and 1. There-
fore, the ex-post realized Sharpe ratio that the
optimal portfolio from the ex-ante forecast return
distribution achieves increases with the value of
the inner product. It is natural to assume that an
investor achieves a higher Sharpe ratio when a
forecast has higher predictability. This means that
the inner product is a measure of the predictability
of the ex-ante forecast return and risk and also that
the maximum realized Sharpe ratio is σ−1

R K−1
R rR.

The vectors in the inner product are both normal-
ized and �σ−1

F K−1
F rF/‖�σ−1

F K−1
F rF‖ does not

include information on the ex-post realized return.
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Therefore, the inner product does not include
information about the absolute value of the market
Sharpe ratio over the investment period. There-
fore, the inner product evaluates the predictability
of the ex-ante forecast separately from the market
conditions over the period.

3 Attribution to predictability

Recall that inner product
(

�σ−1
F K−1

F rF

‖�σ−1
F K−1

F rF‖ , g
)

is a

measure of the predictability of the ex-ante fore-
cast returns and risk. We express the inner product
by P(rF , σF , KF), where rF represents the ex-
ante forecast returns, σF are the ex-ante forecast
risks, and KF the ex-ante forecast risk factors:

P(rF , σF , KF) ≡
(

�σ−1
F K−1

F rF

‖�σ−1
F K−1

F rF‖ , g

)
. (7)

Indeed, P(rF , σF , KF) measures the predictabil-
ity of the overall ex-ante forecast return and
risk. Substituting σF and KF with σR and KR,
respectively, into (7), we get:

P(rF , σR, KR) =
(

�σ−1
R K−1

R rF

‖�σ−1
R K−1

R rF‖ , g

)

=
(

σ−1
R K−1

R rF

‖σ−1
R K−1

R rF‖ , g

)
. (8)

Note that � = I when σF = σR and KF = KR,
where I is the n × n identity matrix.

P(rF , σR, KR) is the predictability of a forecast,
as long as the risk forecast is perfect, that is, �F =
�R. Indeed, the forecast of the risk magnitude is
perfect, σF = σR, and so is that of the risk factors,
KF = KR. In other words, it is the predictability
when the ex-ante forecast returns is not identical
to the ex-post realized returns. In a similar way,
we define the predictability of the ex-ante forecast
risk, which is not identical to the ex- post realized

risk:

P(rR, σF , KF) =
(

�σ−1
F K−1

F rR

‖�σ−1
F K−1

F rR‖ , g

)
. (9)

P(rR, σF , KF) is the predictability of a forecast
as long as the return forecast is perfect, rF = rR.
Additionally, we define the predictability of the
ex-ante forecast magnitude of the risk, which is
not identical to the ex-post realized magnitude of
the risk:

P(rR, σF , KR) =
(

σRσ−2
F K−1

R rR

‖σRσ−2
F K−1

R rR‖ , g

)
, (10)

and the predictability of the ex-ante forecast risk
factors, which is not identical to the ex-post
realized risk factors:

P(rR, σR, KF) =
(

σRK−1
R KFσ−2

R K−1
F rR

‖σRK−1
R KFσ−2

R K−1
F rR‖ , g

)
.

(11)

Again, the vectors in inner products (8), (9),
(10), and (11) are normalized, so their values are
numbers between −1 and 1. Then, we find that
value

1 − P(rF , σF , KF) (12)

shows the level of reduction of the Sharpe ratio
that occurs because the ex-ante forecast distribu-
tion is not identical to the ex-post realized one.
When 1 − P(rF , σF , KF) is 1, there is no reduc-
tion. Indeed, the ex-ante forecast distribution is
the perfect forecast. Similarly, 1−P(rF , σR, KR)

shows the level of reduction of the Sharpe ratio
when the ex-ante forecast returns are not identical
to the ex-post realized returns. 1−P(rR, σF , KF)

shows the level of reduction by the ex-ante fore-
cast risk is not identical to the ex-post risk one.
The reduction by overall ex-ante forecast returns
and risk is not necessarily equal to the sum of
the reduction by ex-ante forecast returns and by
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ex-ante forecast risk because there is some syn-
ergy effect between ex-ante forecast returns and
ex-ante forecast risk.

We define a quantity DTY expressing the synergy
effect:

DTY ≡ (1 − P(rF , σF , KF))

− {(1 − P(rF , σR, KR))

+ (1 − P(rR, σF , KF))}. (13)

We call DTY duplicate term Y . Therefore, we
have

1 − P(rF , σF , KF)

= (1 − P(rF , σR, KR))

+ (1 − P(rR, σF , KF)) + DTY, (14)

where DTY is duplicate term Y . From (14), the
level of the reduction of overall ex-ante fore-
cast returns and risk attributes to the level of the
reduction caused by the fact that the ex-ante fore-
cast returns is not identical to the ex-post realized
returns, and the level of reduction caused by the
fact that the ex-ante forecast risk is not iden-
tical to the ex-post realized risk, and duplicate
term Y .

Similarly, the level of reduction of overall ex-
ante forecast risk 1−P(rR, σF , KF) attributes the
three components, while 1−P(rR, σF , KR) shows
the level of reduction by the ex-ante forecast risk
magnitude is not identical to the ex-post realized
risk magnitude and 1 − P(rR, σR, KF) shows the
level of reduction by the ex-ante forecast risk fac-
tors is not identical to the ex-post realized risk
factors. The reduction by the overall ex-ante fore-
cast risk is not necessarily equal to the sum of the
reduction by the ex-ante forecast risk magnitude
and the reduction by the ex-ante forecast risk fac-
tors because there is some synergy effect between
the ex-ante forecast magnitude of risk and ex-ante
forecast risk factors.

We define a quantity DTX expressing the synergy
effect:

DTX ≡ (1 − P(rR, σF , KF))

− {(1 − P(rR, σF , KR))

+ (1 − P(rR, σR, KF))}. (15)

We call DTX duplicate term X. Therefore, we
have

1 − P(rR, σF , KF)

= (1 − P(rR, σF , KR))

+ (1 − P(rR, σR, KF)) + DTX, (16)

where DTX is duplicate term X. Note that (1 −
P(rR, σF , KF)) is the level of reduction caused by
the ex-ante forecast risk not being identical to the
ex-post realized risk. From (16), we calculate the
level of reduction attributed to the level of reduc-
tion caused by the fact that the ex-ante forecast
risk magnitude is not identical to the ex-post real-
ized risk magnitude, the level of reduction caused
by the fact that the ex-ante forecast risk factors are
not identical to the ex-post realized risk factors,
and duplicate term X. From (5), (14), and (16),
we derive Property 2.

Property 2:

The ex-post realized Sharpe ratio is attributed to
six components. One is the absolute level of the
ex-post realized Sharpe ratio, ‖σ−1

R , K−1
R , rR‖,

which represents the market conditions over the
investment period. The next three components are
the predictabilities of the ex-ante forecast return,
P(rF , σR, KR), the ex-ante forecast magnitude of
risk, P(rR, σF , KR), and the ex-ante forecast risk
factors, P(rR, σR, KF), which an investor uses to
construct an optimal portfolio using the mean–
variance approach at the beginning of the period.
The others are two duplicate terms, DTX and
DTY .
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4 Numerical examples of attributions

In this section, we demonstrate our attribution
analysis using a historical data sample. We use
an investment of weekly S&P 500 10 sector total
return indices for the 471 weekends from the last
weekend of 2007 until the last weekend of 2017.
To this end, we need to prepare sample forecast
return distributions, which we use to analyze the
attributions. In practical analysis, we analyze the
forecast return distribution, which we then use to
construct the optimal portfolio at the beginning
of the investment period. Here, we evaluate “a
test forecast distribution” instead of an arbitrary
forecast distribution. Recall that a return distribu-
tion has a return vector and a covariance matrix.
First, we use the realized covariance matrix of
sectoral returns for the preceding 52 weeks of a
weekend as the test covariance matrix. Second,
we use the realized return vector of the next 52
weeks with some random noise as the test fore-
cast return vector of the weekend. We calculate
the next 52 weeks’ 10-dimensional test forecast
return vector rF (t) and the 10 × 10 test forecast
covariance matrix �F(t) for the next 52 weeks
from weekend t as:

rF (t) ≡ rR(t + 52) + cs(t)ε, (17)

�F(t) ≡ �R(t), (18)

where rR(t) is the 52 weeks’10-dimensional real-
ized return vector until weekend t, �R(t) is the
10×10 realized covariance matrix of the sectoral
returns for the preceding 52 weeks of weekend t,

s(t) ≡
⎛
⎜⎝

s1(t) 0
. . .

0 s10(t)

⎞
⎟⎠, ε ≡

⎛
⎜⎝

z1

...

z10

⎞
⎟⎠,

(19)

where si(t) are the standard deviations of each
sector’s return for the preceding 52 weeks until
weekend t, zi are the random variables under

N(0, 1), each pair zi and zj is independent, and c

is a scalar coefficient. In our numerical examples,
c represents the predictability level of forecast
returns.

We calculate test forecast return vectors, test
forecast covariance matrices, realized return vec-
tors, and realized covariance matrices from the
first weekend of 2009 until the last weekend of
2016, for c = 0.1, 0.3, or 0.5. The random vari-
ables are given by the random function in Excel.
The diagonalizations of the covariance matrices
are performed using “eigen” function of R (R
Core Team. (2016)). From the diagonalizations,
we consider the eigen vectors as the risk fac-
tor vectors and the eigen values as the risk of
the factors. Furthermore, we perform attribution
analysis for the test returns, forecast magnitude of
the test risks, and test risk factors using Property
2, respectively.

Table 1 summarizes the attribution analysis. The
first row shows the average from the first week-
end of 2009 until the last weekend of 2016. The
other rows show the averages for each year. The
values show the averages of the 53 weeks in 2009
and 2015. The remaining years show the average
values of the 52 weeks in those years.

In the first row in Table 1, Column (B) shows that
realized Sharpe ratio SR(rF , �F | rR, �R) of (5)
is the optimal portfolio that the test distribution
achieves. The optimal portfolios based on the test
distribution achieve 0.276 of the realized Sharpe
ratio, on average, for the entire period when c =
0.1. Column (C) shows that the market condition
of the Sharpe ratio is 0.482, on average, indicat-
ing that the maximum Sharpe ratio an investor
can obtain is 0.482 through a non-leveraged
long/short portfolio. The average predictability
of the test distribution is 0.567 in Column (D)
when c = 0.1. Further the imperfect informa-
tion about the realized distribution declines by
approximately 43% of the achievable maximum
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Sharpe ratio, on average. We also find the nat-
ural outcome that the optimal portfolio tends to
achieve a higher Sharpe ratio in Column (B) when
the forecast predictability is higher in Column
(D). Column (E) shows the predictability of test
return P(rF , σR, KR) of (8). Column (F) shows
the predictability of test risk P(rR, σF , KF) of (9).
Indeed, the predictability of the test distribution
in Column (D) is attributed to the predictability
of the test returns and risk without duplicate term
Y in Column (Y) from (14). The predictability
of the test return is 0.743 and the predictabil-
ity of the test risk is 0.750 when c = 0.1. As
such, the 43% reduction is, on average, attributed
to the 26% caused by an imperfect information
about the realized return and to the 25% reduc-
tion caused by an imperfect information about the
realized risk. We can obtain the quantitative infor-
mation about the predictabilities of the return and
risk, simultaneously. Consequently, we can com-
pare the two predictabilities. The magnitude of
the duplicate is 7.5% when c = 0.1 from Col-
umn (Y). Column (G) shows the predictability of
the forecast magnitude of test forecast covariance
matrix P(rR, σF , KR) of (10). Column (H) shows
the predictability of the forecast risk factors of
test forecast covariance matrix P(rR, σR, KF) of
(11). The predictability of the test risk in Column
(F) is attributed to the predictability of the mag-
nitude of the test risk and test risk factors without
duplicate term X in Column (X) from (16). We
find that the predictability of the magnitude of
the test risk is 0.963 and that of the test risk fac-
tors is 0.759. Similarly, the 25% reduction caused
by imperfection information on the realized risk
is attributed to the 4% reduction caused by imper-
fect information on the magnitude of the realized
risk and the 24% reduction caused the imperfect
information on the realized risk factors, on aver-
age. As a result, we can identify the main source
of the reduction for the predictability of risk. The
magnitude of the duplicate is 2.7% from Column
(X). The predictability of the forecast risk factors

of test forecast covariance matrix P(rR, σR, KF)

causes most of the predictability of test forecast
covariance matrix P(rR, σF , KF), which is the
overall test forecast risk, in Columns (F), (G),
and (H) based on historical data. From the attribu-
tion analysis, we can thus comparatively identify
the main source of the reduction in the realized
Sharpe ratio. This information may be useful for
improving the next investments.

When comparing the rows of years 2016 and
2013, the predictability of the test return in 2016
is, on average, higher than that in 2013 when c =
0.1 and c = 0.3. However, the realized Sharpe
ratios in 2016 are, on average, lower than those
in 2013, although the market conditions in both
years have the same level. We identify the reasons
for the difference in the predictability of the test
risks between 2016 and 2013 in Column (F). The
average predictabilities of the test risk are 0.655
in 2016 and 0.805 in 2013. This difference comes
from the difference between the predictability of
the test risk factors P(rR, σR, KF) in 2016 and in
2013. This shows that risk forecast is important,
as is return forecast. In particular, we realize it is
important to forecast risk factors.

5 Attribution analysis against a benchmark

In this section, we discuss the attribution analysis
against a given benchmark using the above pre-
dictability. In the usual ways of analyzing against
a benchmark, we do not evaluate the performance
of the benchmark. Using the attribution analysis
above, we can simultaneously evaluate ex-ante
forecasts and benchmark performance. For exam-
ple, we identify two explanations for the Sharpe
ratio of the optimal portfolio being higher than
that of the benchmark over the investment period:
one is that the performance of the optimal portfo-
lio is superior and the other is that the performance
of the benchmark is inferior. We can assess which
explanation is more acceptable in this situation
using attribution analysis.
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Attribution of Ex-Post Realized Sharpe Ratio 119

From (7), the ex-post realized Sharpe ratio
that optimal portfolio from the ex-ante forecast
return distribution N(rF , �F) achieves under ex-
post realized return distribution N(rR, �R) is
SR(rF , �F |rR, �R). From Property 2, we have
three predictabilities to which the Sharpe ratio
can be attributed, the predictability of the ex-ante
forecast returns P(rF , σR, KR), that of the ex-ante
forecast magnitude of the risk P(rR, σF , KR),
and that of the ex-ante forecast risk factors
P(rR, σR, KF).

Next, we discuss the realized Sharpe ratio of a
benchmark. Assume we have an n-dimensional
vector of the portfolio weights of benchmark wBM

at the beginning of the investment period. Addi-
tionally, we construct benchmark portfolio wBM

based on an assumed n-dimensional vector of ex-
ante forecast returns rBM and the assumed n × n

covariance matrix of the ex-ante forecast risk of
returns �BM using the mean–variance approach
at the beginning of the investment period. After
the investment period, assume that the benchmark
portfolio gains realized Sharpe ratio SRBM over
the investment period.

From Property 1, we have

SRBM = SR(rBM, �BM |rR, �R). (20)

In fact, we have several pairs (rBM, �BM) that
hold for the above equation. We measure the per-
formance of the benchmark after the investment
period. Therefore, in our attribution analysis, we
construct benchmark portfolio wBM based on an
n-dimensional vector of ex-ante implied forecast
returns rBM_I and n × n covariance matrix �R,
which is covariance matrix of the ex-post realized
returns of the risky assets over the investment
period. Indeed, we have the following implied
forecast return for constructing the benchmark
portfolio at the beginning of the investment period
(see Appendix 4):

rBM_I = �RwBM. (21)

From (8), we have a predictability of the implied
forecast return of the benchmark portfolio:

P(rBM_I, σR, KR) ≡
(

σ−1
R K−1

R rBM_I

‖σ−1
R K−1

R rBM_I‖
, g

)
.

(22)

By comparing P(rF , σF , KF) with P(rBM_I,

σR, KR), we can evaluate the ex-ante forecasts
that construct the optimal portfolio and evaluate
the benchmark performance.

Next, we demonstrate the attribution analysis
against the benchmark using the historical data
sample, that is the weekly S&P 500 10 sec-
tor total return indices. It is natural to use the
market weight portfolio as the benchmark. For
this purpose, we prepare the sample portfolio,
which is the optimal portfolio constructed by a
given return and risk forecast. When we ana-
lyze the performance of the portfolio we construct
based on a given forecast return and risk by the
mean variance approach, we directly use forecast
return and risk. However, we use test returns and
test risk instead of an arbitrary return distribu-
tion. Here, we compare the performances of the
equal weighted portfolio and of the benchmark,
which is the performance achieved by the mar-
ket weight portfolio. Additionally, we use the test
risk, as in the previous section, to construct the
equal weighted portfolio using the mean–variance
approach. The test risk is the realized covariance
matrix of the sectoral returns for the preceding 52
weeks of a weekend.

Then, we also have the n-dimensional vector
of ex-ante implied forecast returns rEq_I , which
leads to an equal weighted portfolio serving as
optimal portfolio when using the test risk and the
mean variance approach:

rEq_I = �FwEq, (23)
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Attribution of Ex-Post Realized Sharpe Ratio 121

where wEq = (0.1, . . . , 0.1)′ because we have
the weekly S&P 500 10 sector total return indices
as investable assets in this numerical analysis.

We perform the attribution analysis when we com-
pare the predictability of the implied return of
the equal weighed portfolio with the test risk and
predictability of the benchmark.

Table 2 summarizes the Sharpe ratio attribu-
tion analysis against the benchmark for equal
weighted portfolios over the last weekends of the
eight years from 2009 until 2016. From the first
row of Table 2, Column (B), the equal weighted
portfolio for the last weekend of year 2016 is
0.402 of the realized Sharpe ratio for 2017. Addi-
tionally, the benchmark portfolio, which is the
market weight portfolio at the end of 2016, is
0.483 of the realized Sharpe ratio for 2017. The
excess Sharpe ratio of the equal weighed port-
folio is −0.081 against the benchmark. In other
words, the Sharpe ratio of the portfolio is inferior
to the Sharpe ratio of the benchmark. The pre-
dictabilities of the portfolio and the benchmark
are shown in Column (D) as 0.716 and 0.859,
respectively. The inferiority of the predictability
of the portfolio leads the inferiority of the realized
Sharpe ratio. The return predictability of the port-
folio and the benchmark in Column (E) are at the
same level. Note that the returns are the implied
returns, which indicates that the equal weighted
and benchmark portfolios are the optimal port-
folios when using the mean–variance approach.
We illustrate the risk predictability of the portfo-
lio and its decomposition of it in Columns (F),
(G), and (H). Note that the risk predictability of
the benchmark is 1 because of the definition of
the implied returns of the benchmark portfolio.
Therefore, the inferiority comes from the lower
predictability of the risk, especially the lower
predictability of the risk factor.

Additionally, when comparing the portfolio of the
last weekend of 2016 to the portfolio of the last
weekend of 2015, the equal weighted portfolio
of the last weekend of 2015 is 0.169 of the real-
ized Sharpe ratio for 2016. The predictability of
the portfolio is 0.407. This shows that the pre-
dictability of the portfolio of the end of year 2015
is inferior to that for 2016. Additionally, the pre-
dictability of the benchmark of the end of year
2015 is 0.311. Therefore, the Sharpe ratio of the
portfolio is superior to the Sharpe ratio of the
benchmark for 2016. Further, the Sharpe ratio of
the portfolio is inferior to the benchmark for 2017,
although the predictability of the portfolio at the
end of year 2016 is better than the one at the end
of year 2015. We recognize that the predictability
of the benchmark at the end of year 2016 is supe-
rior to the one of the portfolio at the end of year
2016.

We also determine the importance of risk pre-
dictability for the portfolio at the end of 2013
and its benchmark. From Column (E), the return
predictability of the portfolio is 0.415, which
is superior to the 0.296 one of the benchmark.
However, the predictability of the portfolio is
0.294, which is almost at the same level (0.296)
as the benchmark from Column (D). The risk pre-
dictability of the portfolio is 0.666, this inferior
value reducing the superior return predictability.
We thus obtain rich information using attribution
analysis.

6 Conclusions

In this paper, we propose an attribution method
of the realized Sharpe ratio that evaluates ex-ante
forecast risk and return. Furthermore, we decom-
pose the realized Sharpe ratio into the absolute
value of the market Sharpe ratio, return pre-
dictability, and risk predictability, which is in
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turn decomposed as the predictability of the mag-
nitude of risk and predictability of risk factors.
Additionally, we present numerical examples of
the attribution analysis.

We find that the attribution formula quantita-
tively enables a comparative analysis between
return and risk predictabilities. Furthermore, the
predictability of the risk has a more detailed pre-
dictability, as the magnitudes of the risk and risk
factors. Additionally, we simultaneously eval-
uate the quality of the investor’s portfolio and
of the benchmark against the benchmark. These
attribution analyses provide rich information for
investment analysis, thus being a useful analytical
tool for portfolio managers and sponsors.

However, additional research on the applications
of the properties discussed in this article should
be conducted. For example, the attribution analy-
sis against the benchmark shows that the realized
excess Sharpe ratio of the investor’s portfolio
is decomposed into the predictability and the
realized market conditions. The attribution thus
provides a better understanding of the realized
Sharpe ratio, which facilitates a more practical
analysis. Finally, further research is required to
develop effective ways to use these properties to
analyze different aspects of the investment pro-
cess and thereby improve the realized Sharpe
ratio.

Appendix 1: Optimal portfolio to maximize
the Sharpe ratio

We calculate the derivations in accordance with
Shimizu (2017). Assume a return distribution
N(r,�). First, for a given h, we find the
minimum-variance portfolio as the solution of the
following quadratic programming problem:

minimize w′�w,

s.t. r′w = h, and e′w = 1,
(A1.1)

where e = (1, . . . , 1)′. Problem (A1.1) has the
unique solution below (Steinbach, 2001)

w̄ = �−1(λe + kr), (A1.2)

where

λ ≡ γ − βh

δ
, k ≡ ah − β

δ
, (A1.3)

α ≡ e′�−1e, β ≡ e′�−1r,

γ ≡ r′�−1r, δ ≡ αγ − β2. (A1.4)

Therefore, we obtain the risk of the portfolio:

σ2
w̄ = w̄′�w̄ = γ − 2βh + αh2

δ
(A1.5)

The Sharpe ratio of the portfolio is:

SRw̄ = h

σw̄

= h√
γ−2βh+αh2

δ

(A1.6)

We can obtain the maximum when h = γ/β holds
under the condition that β is positive. By substi-
tuting h = γ/β with (A1.3), we obtain the optimal
portfolio from (A1.2) using

w0 = �−1r

e′�−1r
. (A1.7)

We obtain a higher when h increases under the
condition that β is not positive. In this case, we
continue by substituting r̃ ≡ αrF − βe for rF .
The condition holds where the sum of the Sharpe
ratios of all risk factors becomes negative. How-
ever, it is difficult to predict such a forecast from
an economic perspective. The optimal portfolio
often has highly leveraged positions and large
short positions when h has a large value. Investors
do not usually hold such extreme portfolios.
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Appendix 2: Derivation of theorem 1

We calculate the derivations in accordance with
Shimizu (2017). From (1), and (3), we have

wF = �−1
F rF

e′�−1
F rF

= KFσ−2
F K−1

F rF

e′KFσ−2
F K−1

F rF
. (A2.1)

From (1), (3), and (4) as the definition of �, we
have

w1 = �−1
R KRσR�σ−1

F K−1
F rF

e′�−1
R KRσR�σ−1

F K−1
F rF

= KRσ−2
R K−1

R KRσRσRK−1
R KFσ−1

F σ−1
F K−1

F rF

e′KRσ−2
R K−1

R KRσRσRK−1
R KFσ−1

F σ−1
F K−1

F rF
.

(A2.2)

From KRσ−2
R K−1

R KRσRσRK−1
R = I we have

w1 = KFσ−1
F σ−1

F K−1
F rF

e′KFσ−1
F σ−1

F K−1
F rF

= wF (A2.3)

Appendix 3. Derivation of property 1

Assume we have return distribution N(rx, �R).
From (3), we have optimal portfolio wx =
�−1

R rx/e
′�−1

R rx under return distribution N(rx,

�R). Portfolio wx achieves the Sharpe ratio under
ex-post realized return distribution N(rx, �R):

w′
xrR√

w′
x�Rwx

=

(
�−1

R rx

e′�−1
R rx

)′
rR√(

�−1
R rx

e′�−1
R rx

)′
�R

(
�−1

R rx

e′�−1
R rx

)

= r′
x�

−1
R rR√

r′
x�

−1
R rx

(A3.1)

From Theorem 1, substituting KRσR�σ−1
F K−1

F rF
into (A3.1), the optimal portfolio based on ex-ante
forecast return distribution N(rF , �F) achieves

the Sharpe ratio under ex-post realized return
distribution N(rR, �R):

(KRσR�σ−1
F K−1

F rF )′�−1
R rR√

(KRσR�σ−1
F K−1

F rF )′�−1
R (KRσR�σ−1

F K−1
F rF )

= (�σ−1
F K−1

F rF )′σ−1
R K−1

R rR√
(�σ−1

F K−1
F rF )′(�σ−1

F K−1
F rF )

= ‖σ−1
R K−1

R rR‖
(

�σ−1
F K−1

F rF

‖�σ−1
F K−1

F rF‖ , g

)
,

(A3.2)

where

� ≡ σRK−1
R KFσ−1

F , g ≡ σ−1
R K−1

R rR

‖σ−1
R K−1

R rR‖ ,

(A3.3)

and (x, y) is the inner product of vectors x and y,
and ‖x‖ = √

(x, y) is the norm of x.

Appendix 4. Implied forecast return of a given
portfolio

Let w denote a given portfolio, �F the fore-
cast covariance matrix, and r the implied forecast
return vector:

minimize
1

2
w′�Fw − μr′

Fw,

s.t. e′w = 1.

(A4.1)

We solve the above problem using the Lagrange
multiplier, as follows:

L(w, l) = 1

2
w′�Fw − μr′

Fw − l(e′w − 1).

(A4.2)

Solving

∂

∂w

(
1

2
w′�Fw − μr′

Fw − l(e′w − 1)

)
= 0

(A4.3)
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d

dl

(
1

2
w′�Fw − μr′

Fw − l(e′w − 1)

)
= 0

(A4.4)

then,

∂

∂w

(
1

2
w′�Fw − μr′

Fw

)
= 0. (A4.5)

We have

rF = 1

μ
�Fw. (A4.6)

We let μ ≡ 1 because rF is normalized later.
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