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USING MACHINE LEARNING TO PREDICT
REALIZED VARIANCE

Peter Carr∗,a, Liuren Wu†,b and Zhibai Zhang‡,a

Volatility index is a portfolio of options and represents market expectation of the underlying
security’s future realized volatility/variance. Traditionally the index weighting is based
on a variance swap pricing formula. In this paper we propose a new method for building
volatility index by formulating a variance prediction problem using machine learning. We
test algorithms including Ridge regression, Feedforward Neural Networks and Random
Forest on S&P 500 Index option data. By conducting a time series validation we show that
the new weighting method can achieve higher predictability to future return variance and
require fewer options. It is also shown that the weighting method combining the traditional
and the machine learning approaches performs the best.

1 Introduction

Estimating future return variance is an essen-
tial part for investing. Similar to future return, a
security’s return variance often exhibits stochastic
behavior which makes it challenging to forecast.
For many derivative instruments, pricing is pre-
dominantly determined by modeling the underly-
ing asset’s volatility in the risk neutral measure.

aDepartment of Finance and Risk Engineering, NYU
Tandon School of Engineering, New York, USA.
bZicklin School of Business, Baruch College, City
University of New York, New York, USA.
∗petercarr@nyu.edu
†liuren.wu@baruch.cuny.edu
‡z.zhibai@gmail.com, corresponding author.

There has been a broad literature on derivative
pricing which involves various volatility models.
These range from the simple setup with constant
volatility (Black and Scholes, 1973) to the ones
that use deterministic functions (Dupire, 1994),
and to the complex models that treat volatility
as stochastic processes (Heston, 1993). On the
other hand, the market price for options and other
derivative instruments on a security reflects a
universal expectation of the underlying’s future
return variance. Therefore, it is reasonable to
use option market price and the implied volatility
to project future return variance even without a
specific volatility model.1

Since there are numerous options written on a
security and each of them has different implied
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volatility, aggregating the options to build a
single variance estimate is non-trivial. This can
be viewed as a classic indexing problem that
consists of security-selection rules and a weight-
ing scheme. The most well-known volatility index
in this category is the CBOE Volatility Index
(VIX), which is composed of options with close
to 30-day maturity on S&P 500 index (SPX). It
is one of the most commonly used estimators
for 30-day future variance of SPX. There is an
increasing number of volatility indices on various
equity indices and major instruments in fixed-
income, currency and commodity in recent years.
For VIX-styled indices, the option weights are
determined by a variance swap pricing formula
such that the index’s squared payoff replicates the
underlying’s variance in the risk-neutral measure.
Albeit its popularity, theVIX-styled indexing pos-
sesses some caveats. First, as the weights are
set in the risk-neutral measure, it is not cer-
tain if the weighting scheme has the optimal
forecastability to future volatility, especially out-
of-sample (OOS) in the market measure. Addi-
tionally, it involves a large number of out-of-the
money options with ascending illiquidity. This
makes it expensive and impractical for hedging
any tradable products associated with the index,
as it requires one to hold many thinly traded
options.

In this paper we propose a new volatility indexing
method to improve predictability and liquidity.
To do so, we formulate a regression problem to
predict realized variance by using option price as
features and construct a weighting scheme from
the loadings of the regression. We experiment
with algorithms including linear and machine
learning techniques such as Ridge, Feedforward
Neural Networks (FNN) and Random Forest, and
impose constraints on model selection to make
sure that the prediction can be replicated by an
option portfolio. We test the algorithms with a

time series validation approach on SPX and its
option data.

We discover that by combing the prediction model
and the VIX-styled weighting scheme, one can
achieve an index that has improved predictabil-
ity and liquidity. The best performing approach
is to use machine learning regression to fore-
cast the deviation between the realized volatility
and the VIX-styled index’s prediction, which is a
proxy of the variance risk premium. Intuitively,
this approach can be interpreted as applying a
machine learning algorithm to minimize the devi-
ation between a human model’s prediction and
the actual outcome. Therefore, our results repre-
sent a successful combination of human learning
and machine learning. We also discuss suitability
of different regression algorithms for volatility
indexing. As we will show, the tradability con-
dition in fact imposes a strong constraint on
algorithm selection, which most models do not
satisfy except for piece-wise linear ones such as
FNN with an ReLU activation function. Addi-
tionally, we employ a machine learning feature
importance method to test every option’s con-
tribution to the prediction. We find that the
the options’out-of-the-moneyness is proportional
to their predictability to realized variance, and
calls on average have higher predictability than
puts.

This paper joins a large number of literature
on variance forecasting. In the past, there has
been great progress on time series-based models
such as ARCH/GARCH (Engle, 1982; Boller-
slev, 1986) and HAR (Corsi, 2009). It has been
shown that historic volatility measures exhibit
predictability at future realized volatility. To this
end, we also experiment with historic volatility
features as alternative tests to the main model
and we find that their contribution is limited in
our framework. There has also been abundant
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study on the predictability of option price and
implied volatility at realized volatility (Federico
et al., 2008; Andersen et al., 2007; Jeff, 1998;
Busch et al., 2011). More recently, applica-
tion of machine learning techniques in volatility
forecasting have emerged (Luong et al., 2018;
Hamid, 2004). To the best of our knowledge, this
paper is the first attempt to apply machine learn-
ing to predict volatility and build a volatility index
at the same time.

The rest of this paper is organized as follows: In
Section 2 we review the details of VIX-styled
volatility indices’ construction and caveats. In
Section 3 we show how to process option data to
formulate a realized variance prediction problem.
We also discuss model selection and evaluation.
This is followed by Section 4, where we present
the main result on prediction performance. Sec-
tion 5 concludes and presents directions for future
research.

2 Volatility index and variance prediction

Established in 1993, the CBOE Volatility Index
(VIX) is one of the first equity volatility indices
and it has been broadly used as the volatil-
ity/variance benchmark for the entire US equity
market. Initially, VIX is built from only the
at-the-money implied volatility of the underly-
ing. In 2003, CBOE changed the pricing method
to incorporate a variance swap pricing formula
which is based on the price of a large number
of out-of-the-money options. This new method
proved to be more robust as it covers a much
wider range of the implied volatility surface.
Since then, VIX and its tradable derivatives (i.e.,
options, futures and exchange-traded products)
have grown considerably more popular. In recent
years, CBOE has carried out a series of VIX-
styled volatility indices on other assets, including
major equity indices, interest rates, FX and com-
modities. In this section, we review the details of

the variance swap pricing-based index weighting
method. Schematically, the index level is calcu-
lated as the squared root of the value of a portfolio
of out-of-the-money (OTM) SPX options with
weights inversely proportional to the squared
strike prices:

VIX2 ∼
∑ 2�K

K2
O(K, τ), (1)

where O(K, τ) is the price of an option with
strike price K and time-to-maturity τ, and �K

the constant spacing between strikes. The 2�K
K2

weighting scheme comes from the variance swap
pricing formula in (Carr and Madan, 2001; Carr
and Wu, 2009). The weights are determined such
that the portfolio’s payoff perfectly replicates the
variance of the underlying in the risk-neutral
measure.

As for the same underlying security there are
numerous active options with different strikes and
time-to-maturity’s, it is important to have selec-
tion criteria for the options that go into Equation
(1). Since VIX is designed for a 30-day horizon,
ideally it is best to choose options expiring in
exact 30 days. However, this is not realistic as
most of the time these options are not available
on the market. CBOE applies a more general two-
step procedure to select option tenors. Namely,
one selects ‘near-term’ options with maturity τ1

the closest to yet less than 30 days, and ‘next-term’
options with maturity τ2 the closest to yet greater
than 30 days. These two tenors are then linearly
interpolated to formulate an exact 30-day horizon.
Secondly, for each term, one selects as many out-
of-the-money options as possible, with ascending
(for calls) or descending (for puts) strikes K. For
both terms, all the strikes are included until two
consecutive strikes are missing a quote. As such,
the number of strikes varies from time to time,
highly depending on the liquidity of the option
market.
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Once the options are selected, one computes the
implied variance for each term:

σ2
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2

τ1

∑
h

�K

K2
h
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− 1
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− 1
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where �K = Kh+1 −Kh is the spacing in strike
prices, Ri is the interest rate for each term and F

is the forward index value. The second term on
the r-h-s in each equation is considerably smaller
than the first term. Finally VIX is computed as the
square root of a weighted sum of the r-h-s in the
above equations up to scaling by 100:

VIX

100
=
√

τ1σ
2
1

(
τ2 − 30

τ2 − τ1

)
+ τ2σ

2
2

(
30− τ1

τ2 − τ1

)
.(3)

When there is options with 30-day time-to-
maturity, one can simply compute the variance

term in Equation (2) for them without fur-
ther interpolation. For more details, see (VIX
White Paper, CBOE). It is worth noting that by
its nature, this pricing formula-based weight-
ing scheme overweights OTM put options and
underweights OTM call options, as shown in
Figure 1.

As mentioned above, the normalized2 level of
VIX is commonly considered a benchmark for
S&P’s 30-day realized volatility forecast. We
will show that this measure indeed exhibits pre-
dictability to realized volatility, measured by
positive out-of-sample R2. However, the weights
determined in the risk-neutral measure may not
have the most optimal predictability. Further-
more, the option selection criteria normally pro-
duce a large number of options. For instance, in
the example in (VIX White Paper, CBOE), with
the spot price at $1960, the lowest put strike is
at $1370 while the highest call strike is at $2125,
the entire universe contains 149 options in total.
Holding that many OTM options is extremely
costly as the liquidity is very low for deep OTM
options in general. This makes hedging chal-
lenging for VIX derivatives sellers. For these
reasons, we explore machine learning algorithms

Figure 1 VIX weights as of January 2, 2019.
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Figure 2 S&P 500 price (blue), its 30-day realized return volatility (orange) and VIX (red).

to improve the VIX weighting scheme’s pre-
dictability and liquidity.

3 Formulate a machine learning
regression problem

In this section we propose a new method to
build volatility indices using a machine learn-
ing approach. More specifically, we set up a
supervised machine learning regression problem
that uses option price to forecast future return
volatility. By taking the regression loadings as
weights, we then construct an option portfolio as
the volatility index.

To begin with, we briefly review the basis of
the supervised machine learning paradigm. With-
out loss of generality, a supervised ML algorithm
can be summarized as a function approximation
problem aimed to find a function f(·) such that

y = f̂ (�x),

f̂ = arg min{Err(f(�x), y)}
(4)

where Err(f(�x), y) is a pre-defined object func-
tion defined on the sample data set (y, �x).
For many ML algorithms, f(·) is either semi-
parametric (with a large number of parameters)

or non-parametric (can only be carried out opera-
tionally and does not have a closed-form expres-
sion). y is usually referred to as the target value
and entries in �x are referred to as features. Next,
let us specify the features and target value that is
suitable for a volatility index.

3.1 Data processing and feature generation

We use daily data of options written on SPX with
a time span from 1996 to 2016, which includes
more than 5,000 trading days. The option mar-
ket data is obtained from OptionMetrics. On
each trading day, the data contains midquotes
of options with multiple maturities and strikes.
A sample data set is shown in Figure 3. Further-
more, interest rate and SPX spot and forward price
data are also used.

Generating features from option price time series
proves to be a non-trivial task. There are two
aspects of this data set that raise problems for a
machine learning formulation. First, the actively
traded options are those whose strikes are cen-
tered around the spot, which varies all the time.
As a result, the set of OTM options needs to be
re-selected daily. Moreover, the options’ maturi-
ties continue to decrease until expiry. In general,
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Figure 3 A sample of the OptionMetrics’ option market data. The fields relevant to the analysis are trading
date (Date), expiration date (expiry), spot price of SPX (S), short-term interest rate (R), call/put type (CP), bid
price (Bid) and ask price (Ask).

most machine learning algorithms require the
features to be stationary. Since our goal is to
use option price to forecast the realized volatil-
ity with a fixed horizon, it is also important
to have the options’ maturities in sync with the
forecast horizon. Fortunately, the construction of
VIX provides a solution to the varying matu-
rity issue. Namely, we can linearly interpolate
the option with the closest maturities to the fore-
cast horizon as in Equation (3). Since regression
problems require a fixed number of features, we
need to select a constant number OTM options
with strikes centered around the spot price. Put
together, we generate raw option price features as
follows:

Õt(Kh, T ) = Ot(Kh, τ1)

(
τ2 − T

τ2 − τ1

)

+Ot(Kh, τ2)

(
T − τ1

τ2 − τ1

)
, (5)

where T is the forecast horizon (in the case of
VIX this is 30 day), τ1 and τ2 are the two closest
existing maturities to T of all available options
at day t. For each day, we select N = 2n + 1
of strikes Kh centered around the at-the-money
strike K0:

{K−n, K−n+1, . . . , K−1,

K0, K1, . . . , Kn−1, Kn}, (6)

where �K = Ki − Ki−1 (for SPX options,
�K = $5). It needs to be understood that the
at-the-money strike K0 changes every day fol-
lowing the spot price St . Therefore, the strike
set Equation (6) is determined on a daily basis.
Notice that as n becomes larger, the correspond-
ing strike Kn is more out-of-the-money and the
option tends to be less frequently traded. If for a
specific Kh, the option does not have a quote, we
linearly interpolate the midquote using midquotes
of the options with the two closest strikes to Kh.
This way, Equation (5) gives rise to a consistent
feature generation once the number of features N

and forecast horizon T are chosen for an option
time series. The detailed feature generating pro-
cedure is shown in the code snippets at the end of
this subsection.

In machine learning for most algorithms, it is
important to normalize features to meet station-
arity conditions. For each feature, a common
practice is to subtract its sample mean and divide
it by its sample standard deviation. We apply
this technique and normalize the features using
the training sets. In addition, there is sub-
tlety related to financial time series, which is
that a security’s price is a non-stationary pro-
cess as otherwise there is arbitrage. Therefore,
option price features in Equation (5) contain this
specific nonstationarity that cannot be removed
by the standard machine learning normalization
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procedure. A rationale is that, an option on SPX
worth $5 in 2010 is not the same as an option
worth the same thing in 2015, as the level of
SPX has grown considerably over that period.
For this reason, we apply the following pre-
processing before the standard ML normalization
to the option price features in Equation (5):

Ōt(Kh, T) = Õt(Kh, T)

K2
h

. (7)

In addition to the main option price features, we
also experiment with returns-based idiosyncratic
features of SPX as alternative tests. These include
realized returns and variance with different look-
back windows.

• Realized returns, rt,l = pt−pt−l

pt−l
with l ∈ {1, 5,

15, 30, 60, 90}
• Realized variance, vart,l = 1

l

∑l
i=1(rt−i− r̄)2,

with l ∈ {15, 30, 60, 90}

We only consider these features in combination
with the option features, but not their predictabil-
ity individually. This is mainly because that once
these features are added, the prediction is no
longer tradable as they cannot be replicated by
any portfolio.

3.2 Target value and two regression
approaches

Though volatility and variance are virtually the
same variable, we are predominantly focused on
forecasting future realized return variance. This
is to avoid the extra step of taking square root
in Equation (1). The realized return variance
between time t and t + T is given by

VarT
t =

1

T

T∑
i=1

(rt+i − r̄)2, (8)

where rj = pj−pj−1
pj

is the security’s daily return
at time j and r̄ is the average return between t+1
and t + T . Sometimes the mean return r̄ is omit-
ted as it is close to zero in most cases. Volatility
is the square root of the variance and it is more
often quoted in the derivative markets. In this
paper, we use the terms volatility and variance
interchangeably.

Our first approach is to directly model future
realized variance as a function of option price.
Mathematically, this is

VarT
t = f({Ot(Ki, T

′
j)})+ εt, (9)

where {Ot(Ki, T
′
j)} is all the options across

selected strikes and tenors and εt is a zero-mean

Algorithm 1. Strike selection

1 Input: {1, 2, . . . , D} = timestamps; ATMt= ATM strike on day-t; n=# of selected OTM put/call
2 Output: KS = selected strikes
3 KS ← ?
4 for Each day t ∈ {1, 2, . . . , D} do
5 KSp← ?, KSc← ?
6 for i ∈ {1, . . . , n} do
7 Append (ATMt − i×�K) to KSp

8 Append (ATMt + i×�K) to KSc

9 end
10 KSt ← KSp

⋃
KSc

⋃{ATMt}
11 Append KSt to KS

12 end

Second Quarter 2020 Journal Of Investment Management

Not for Distribution



64 Peter Carr et al.

Algorithm 2. Data processing and feature engineering

1 Input: {1, 2, . . . , D} = timestamps; KS = selected strikes; T = forecast horizon
2 Output: {Õ} = option features; VIX∗ = synthetic VIX index
3 for Each day t ∈ {1, 2, . . . , D} do
4 if On day-t there exists options with exact 30-day maturity then
5 Select all options with tenor τ = 30 and strike K ∈ KSt

6 if There exists missing price for selected options then
7 Fill missing price by liner interpolation in the selected strike set
8 end
9 Collect selected options’ price {Õt}; Compute VIX∗t with τ = 30

10 end
11 else
12 Find near-term τ1← argminτ<30|τ − 30|
13 Find next-term τ2← argminτ>30|τ − 30|
14 for τ ∈ {τ1, τ2} do
15 if There exists missing price for selected options then
16 Fill missing price by liner interpolation in the selected strike set
17 end
18 Collect selected options’ price {Õt}; Compute VIX∗t with τ’s using Equation (3)
19 end
20 Generate features using options’ price with τ1 and τ2 from Equation (5)
21 end
22 end

noise term. As mentioned above, the function
f will be determined by fitting the algorithm
on the training data set. We call this approach
Regression I.

An ML-based function approximation such as
Equation (9) can be useful in estimating functions
with high non-linearity and non-parametricity.
This makes Equation (9) desirable as realized
variance is expected to be strongly non-linear.
However, the large number of parameters and
complex optimization involved in ML algorithms
may also be problematic, as they can lead to
overfitting due to outliers in the training set (e.g.
extremely high volatility events). Additionally,
as VIX-styled weighting scheme already contains
some predictive power, in principle we would like

to incorporate it with the regression approach too.
This leads to our second regression approach:

VarT
t = VIX ∗({Ot(Ki, T

′
j)})2

+ f({Ot(Ki, T
′
j)})+ εt, (10)

where VIX∗ is the synthetic VIX index using the
selected options. The only difference between
the two is that VIX∗ contains a fixed number
of options throughout time. We call approach
Equation (10) Regression II.

Note that if one switches the VIX∗2 to the l-h-s,
then it is equivalent to regress a variance risk
premium (VRP) proxy, which is

VRPt = VIX∗2t − Vart . (11)
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So this approach is to train the algorithm to fore-
cast VRPt and combine it with VIX∗ to forecast
realized volatility. Though Equation (10) is a spe-
cial case of Equation (9), the two approaches
in general produce different results in non-linear
cases. Regressing the difference between VarT

t

and VIX∗2 rather than directly regressing VarT
t

can be considered as a normalization procedure.
In non-linear models, proper normalization can
often substantially improve an algorithm’s fitting
and performance. We will show that Regression
II indeed outperforms Regression I.

3.3 Algorithms

One advantage of machine learning is that the
algorithm can be highly adaptive. In the form of
Equation (4), this means that f̂ usually does not
have a close form expression. Since we want to be
focused on an indexing problem, this may cause
trouble. In both of the two regression approaches
Equations (9) and (10), if we require that the
forecast can be replicated by an option portfo-
lio, we need f(·) to be at least a piece-wise
linear function. This is actually a strong constraint
that renders many ML regression methods not
suitable. For instance, for K-nearest neighbors
regression the forecast is made on the sub-sample
mean of the training set and is clearly not piece-
wise linear. In that case, obviously one cannot
build an option portfolio whose payout is the
forecast.

In this paper, we consider four regression algo-
rithms: linear regression, ridge regression, feed-
forward neural network regression with ReLU
activation function and random forest regres-
sion. We start off with linear regression for its
simplicity. Compared with ML algorithms, lin-
ear regression has the advantage that it does
not involve tunable parameters which makes it
the least prone to overfitting. However, linear
regression also has a few shortcomings, such as its

lacking of non-linearity. Another potential issue
is that, since our main feature set is a basket of
options that have strong correlation, it may cause
trouble for the ordinary least square fitting. For
this reason, we consider ridge regression, which
has the same functional form as linear regression
but the error function is L2 regularized.

Feedforward neural network (FNN) is one of the
simplest neural network models. The graphic rep-
resentation of a neural network is composed of a
number of layers, including an input layer cor-
responding to the features and an output layer
corresponding to the labels. The rest is referred
to as hidden layers. Each layer contains several
neurons and different layers are connected by a
certain topology. Mathematically, both neurons
and connections between neurons correspond to
variables of the prediction functions. A feedfor-
ward neural network with one hidden layers has
the following functional form

y(xxx,www) = O

⎛
⎝∑

j

w
(2)
j · h

(∑
i

w
(1)
ji xi + w

(1)
j0

)

+w
(2)
0

)
, (12)

where O and H are so-called activation functions
on the output and hidden layers, w

p
ji is connec-

tion weight that connects the i-th neuron on the
(p − 1)-th layer to the j-th neuron on the p-
th layer. Activation functions are functions that
filter the input information and determine the
amount of output information, and are usually
non-linear. For our purposes, we select rectified
linear unit (ReLU) as the activation function for
both the hidden layer and the output layer. This is
because among the most commonly used activa-
tion functions, only ReLU is both non-linear and
piece-wise linear. ReLU is defined as

ReLU(x) = max{0, x}. (13)
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With an ReLU FNN, y is piece-wise linear:

y(xxx,www) =
∑
i,j

1(2),jw
(2)
j w

(1)
ji xi + const. (14)

where 1(p),k is an indicator function that corre-
sponds to the ReLU activation function on the k-th
neuron on the p-th layer. Now it is evident that
ReLU FNN is piece-wise linear and thus suitable
for our tradability constraint. For model simplic-
ity, we construct FNN with only one hidden layer,
whose number of neurons is the same as the input
layer.

On the contrary, some ML algorithms are not
piece-wise linear. Random forest is a very pop-
ular algorithm in this category. Random forest
is an ensemble algorithm that consists of mul-
tiple base algorithms called decision trees. For
decision tree regression, the algorithm iteratively
splits the input data on the features such that the
information gain from splitting a parent sample
to children samples is optimized. After the algo-
rithm is trained, each sample (regardless of the
training or the test set) can be run through the
tree and land on one of the many sub-samples
after splitting the original training sample. The
prediction is then given as the mean value of the
dependent variable in the specific sub-sample. In
random forest regression, multiple decision tree
regressions are fitted, each on a randomly sam-
pled training set to increase robustness, and the
final prediction is an average of the prediction of
all decision trees. So schematically, the forecast
from random forest regression is

y(x) = 1

NI

∑
i∈I

yi, (15)

where I is the subset the (x, y) belongs to, NI

is the total number of samples in this subset and
yi is the value of the dependent variable of the
i-th sample in the subset. Relating to our set-
ting, this means that when using random forest,

the predicted variance is a function of the real-
ized variances of selected past timestamps, which
clearly cannot be the payoff of an option portfo-
lio. More straightforwardly, Equation (15) is not a
piece-wise linear function. Nonetheless, we will
keep random forest in the test for predictability
comparison.

3.4 Validation, evaluation and model
calibration

To evaluate all algorithms and feature combi-
nations, we formulate an out-of-sample (OOS)
test on the data set in a time series fashion. To
do so, we reserve the first 1,000 observations
for both hyperparameter optimization and initial
training, and we make OOS prediction on the
first 30 observations on the remaining set. We
re-train the model after every 30 observations
with all the available observations on a rolling
basis. Every time the training set is purged to get
rid of the observations that has an informational
overlap with the test set (see (Lopez de Prado,
2018) for similar techniques). Obviously a dif-
ferent combination of the size of each training
set and the frequency of model retraining may
vary the performance of each model. We do not
test other validation settings as this may cause
overfitting due to the limited amount of data.
A graphic representation of the OOS test is shown
in Figure 4.

For prediction performance metrics, we use
OOS R2

R2 = 1−
∑

i(yi − pi)
2∑

i(yi − ȳ)2
, (16)

where yi is the actual realized variance for sample
i, ȳ is the mean realized variance of all samples
and pi is the model predicted realized variance
for sample i. For Regression II (Equation (10)),
even though the direct prediction is the nega-
tive variance risk premium, we convert it back
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Figure 4 An illustration of the rolling validation process.

to realized variance by adding VIX∗2 when com-
puting the R2. This way the R2 for both regression
approaches is comparable.

Most if not all ML algorithms contain multiple
hyperparameters that need to be tuned. Acommon
practice is to optimize a large number of hyperpa-
rameter combinations using cross-validation and
choose the combination that performs the best.
It is worth noting that tuning hyperparameters
unavoidably raises the likelihood of overfitting as
a trade-off. This is especially true with financial
time series data, which exhibit very low signal-
to-noise ratio. Therefore, we need to keep the
number and kind of hyperparameters as low as
possible. To achieve this, for each of the three
selected algorithms, we only tune a hyperparam-
eter associated with the regularization strength.
More specifically:

• for Ridge, the L2 regularization strength λ ∈
{10−3, 10−2, 10−1, 1, 102, 103, 104}
• for ReLU FNN, the L2 regularization strength

λ ∈ {10−3, 10−2, 10−1, 1, 102, 103, 104}
• for Random Forest, maximum tree depth ∈
{3, 5, 10,∞}.

We note that, the L2 regularization strength for
both Ridge and ReLU FNN in Regression II
Equation (10) has a fairly clear interpretation: It
represents how much the new weights deviated
from the old VIX’s weights. For each algorithm,
we optimize the hyperparameter in the initial
1,000 sample training set by taking the first 900
samples as training and the rest 100 samples as

test. For FNN, we use Adaptive Moment Esti-
mation (Adam) as the solver. All the algorithms
are implemented in Python using the Scikit-learn
package (Pedregosa et al., 2011).

4 Main results

In this section we present our main finding. First,
we show the OOS R2 for both regression meth-
ods with all four algorithms. We conduct the
experiment with a varying number of consecutive
strike prices and two different forecast horizons.
The performance is compared across different
algorithms. Then we report the results of some
alternative tests, including using non-consecutive
strike prices and adding historic volatility and
returns as extra features. Last but not least, we
apply a robust machine learning feature impor-
tance analysis on the option price features to test
the contribution of each option to forecast future
realized volatility. To our surprise, it turns out that
calls have higher importance than puts, in contrast
to VIX’s weighting scheme.

4.1 T = 30 days

The first forecast horizon we test is 30 days,
which is the designated horizon for VIX. For each
algorithm, we use 2k + 1 consecutive options as
features (k OTM put, k OTM call and 1 ATM),
with k ∈ {10, 20, 30, 40}. We present the per-
formance for the two regression approaches, and
highlight the best performing algorithm with a
specific number of options.
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• OOS R2 for Regression I,

# of
options VIX∗2 Linear Ridge RF FNN

21 0.169 0.313 0.276 −0.018 0.154
41 0.313 0.191 0.329 −0.021 0.114
61 0.366 0.163 0.339 −0.023 0.251
81 0.389 0.153 0.334 −0.026 0.339

• OOS R2 for Regression II,

# of
options VIX∗2 Linear Ridge RF FNN

21 0.169 0.313 0.290 0.227 0.227
41 0.313 0.191 0.329 0.327 0.326
61 0.366 0.163 0.326 0.371 0.368
81 0.389 0.153 0.312 0.392 0.394

Combining the two regression methods’ results
and best performance of each algorithm for a
specific number of options, the overall model
comparison is shown in Figure 5. First, it is
apparent that Regression II produces greater per-
formance than Regression I, as the OOS R2 for
the former is higher than that of the latter for
all non-linear algorithms (for VIX∗ and linear
regression, I and II are equivalent). It is also
obvious that including more options enhances
OOS R2, except for linear regression. This is
because adding more options whose prices are

Figure 5 T = 30 days. OOS R2 for different algo-
rithms, optimal performance combining Regressions I
and II.

highly correlated deteriorates linear regression’s
fitting. Nonetheless, when the number of options
is small, linear regression actually outperforms
the others. As the number of options increases,
FNN with Regression II becomes the best one,
though the difference to other methods is only
incremental3.

4.2 T = 60 days

Next we conduct a similar test with T = 60 days.
We present the performance for the two regression
approaches, and highlight the best performing
algorithm with a specific number of options.

• OOS R2 for Regression I,

# of
options VIX∗2 Linear Ridge RF FNN

21 0.300 0.264 0.226 −0.015 0.094
41 0.206 0.269 0.276 −0.023 0.099
61 0.014 0.247 0.303 −0.022 0.140
81 −0.155 0.216 0.313 −0.025 0.146

• OOS R2 for Regression II,

# of
options VIX∗2 Linear Ridge RF FNN

21 0.300 0.264 0.247 0.296 0.297
41 0.206 0.269 0.288 0.339 0.339
61 0.014 0.247 0.299 0.299 0.297
81 −0.155 0.216 0.294 0.243 0.244

Combining the two regression methods’ results
and best performance of each algorithm for a
specific number of options, the overall model
comparison is shown in Figure 6. Interestingly, as
the forecast horizon goes up the benefit of includ-
ing more options diminishes. In most cases, the
performance becomes worse after the number of
options is above a certain value. For 60-day hori-
zon the optimal number of options is 41, with
FNN, Ridge and Random Forest being quite close.

4.3 Alternative tests

To further verify our models’ predictability, we
run a couple of alternative tests in addition to the
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Figure 6 T = 60 days. OOS R2 for different algo-
rithms, optimal performance combining Regressions I
and II.

results reported above. First, as mentioned in Sec-
tion (3.1), we add returns-based features to the
main option-based features. Since a key of our
approach is to maintain both predictability and
tradability, it is important to note that these fea-
tures are not tradable and cannot be included in
an index. Nonetheless, we add these features to
see how much predictability they may contribute
to the main option features. To do this, we re-
run the OOS test using Regression II for T = 30
days, with 41 consecutive options and the 10 real-
ized returns and variance features. The OOS R2’s
are:

Options and realized
algorithms Options returns/variance

Linear 0.191 0.124
Ridge 0.329 0.335

Random 0.327 0.331
Forest
FNN 0.326 0.330

It shows that except for linear regression, includ-
ing realized returns and variance features can
improve the performance, even though the change
is incremental.

Since the options of the same underlying tend
to have strong correlations, it is interesting to
see if one can increase the spacing in strikes
when selecting options. By selecting options with
larger distance in their strikes, one gets the ben-
efit of using fewer options, which corresponds
to greater liquidity. So far we have only tested
the algorithms with consecutive strikes, namely,
the spacing is $5. Here we re-run FNN using
regression II with 21 and 41 options and increased
spacing of $10. The results are quite interesting:

# of options �K = 5 �K = 10
21 0.227 0.253
41 0.326 0.268

It shows that having consecutive strikes is in fact
necessary to maintain the predictability, as when
the number of options is 41 the performances with
�K = 5 and �K = 10 diverge and the larger
spacing set performs less well.

4.4 Feature importance for calls and puts

To better understand the mechanism of the new
approach, we investigate how the regression
methods weight the options with strikes. To check
this, a straightforward way is to compare the new
weights in Equations (9) and (10) with VIX’s
weights in Equation (3). However, this has a
drawback: as the new weights are determined by
regression loadings that are fitted on training data,
the larger weights do not necessarily correspond
to higher importance to OOS prediction. For
this reason, we apply a feature importance mea-
sure called mean-decreased-accuracy (MDA), a
method extensively used in the machine learning
literature.

The MDA procedure computes the importance of
each feature as follows: (a) one trains an algorithm
on the training set using all the original features;
(b) predictions are made on the test set, and a
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performance measure (e.g. R2) is recorded as p0;
(c) values of one of the features, i, in the test set
are randomly shuffled and predictions are re-made
on the test set; and (d) the performance associated
with the shuffled feature i is recorded as pi. The
MDA feature importance for i is then

MDA(i) = p0 − pi

p0
. (17)

We apply MDAto the data set with these specifica-
tions: we take Regression II with T = 30 days and
61 options using Ridge regression. The feature
importance is shown in Figure 7. We observe two
interesting patterns: (a) for both puts and calls,
the more OTM, the higher the feature importance
is; (b) calls are on average more important than
puts. This is surprising as the importances are
somewhat different from that of VIX’s weight-
ing scheme. It furthers shows that the distinction
between results drawn in the risk-neutral measure
and OOS predictions.

5 Conclusion

In this paper we focused on a machine learning-
based realized variance prediction and indexing
problem. Inspired by the predictability of VIX as
a volatility index to SPX’s 30-day realized vari-
ance, we proposed a new indexing method. More
specifically, we formulated a regression problem
to predict realized variance by using option price
as features using SPX and its option data. We
tested algorithms including linear and machine
learning regression methods such as Ridge, Feed-
forward Neural Networks (FNN) and Random
Forest. It was demonstrated that when the algo-
rithm is piece-wise linear, the prediction can be
replicated by an option portfolio, which gives rise
to a new volatility index.

We discovered that by combining the prediction
model and the VIX-styled weighting scheme, the
new index can achieve greater predictability and
liquidity. In this approach the machine learning

Figure 7 Feature importance across all options. The x-axis is the options’ moneyness, e.g. −30 stands for the
OTM put struck −30 ·�K away from ATM. Hence the left half is for OTM puts and the right half is for OTM
calls. The y-axis is the feature importance of each option measure by the percentage improvement to the OOS
volatility prediction.
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algorithms are applied to correct the deviation
between VIX’s prediction and the actual real-
ized volatility. It was shown that this approach
outperformed VIX-styled weighting scheme and
machine learning individually. Therefore, we
argue that it represents a successful combina-
tion of human learning and machine learning. In
addition, we employed a machine learning fea-
ture importance method to test every option’s
contribution to the prediction. While in VIX’s
weighting scheme the weights monotonically
decrease with the strike price, we found that in the
new approach the more out-of-the-money options
have greater predictability and calls on average
have higher importance than puts.

Before closing, we highlight a few future direc-
tions along the line. First it is worth looking
into the predictability of other predictors such as
macro and cross-asset factors. If these features
are tradable, namely, they can be replicated by
tradable securities, then the method can be gener-
alized to a broader volatility index consisting of
options and other instruments. Secondly, it will
be useful to test the framework with higher fre-
quency data. This way, with potentially much
larger data sets, the power of machine learning
may be enhanced. It will also be interesting to gen-
eralize the Regression II approach in this paper to
other forecast problems and investigate whether
ML can improve existing parametric models.
As shown in this paper, the human + machine
learning approach can outperform each of them
individually. It will be intriguing to investigate if
this works in other areas.

Notes

1 Throughout this paper, we will use the terms volatility
and variance interchangeably. For most cases, they are
equivalent as volatility is just the square root of variance.
Nonetheless, our prediction is formulated on variance
instead of volatility as discussed in Section 3.

2 Normalization is to divide the level by 100 · √252.

3 In Gu et al. (2018), the authors report a similar incre-
mental enhancement from ML in the case of asset
pricing.
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