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S U R V E Y S AN D C R O S S O V E R

This section provides surveys of the literature in investment management or short papers exemplify-
ing advances in finance that arise from the confluence with other fields. This section acknowledges
current trends in technology, and the cross-disciplinary nature of the investment management
business, while directing the reader to interesting and important recent work.

RISK, REWARD, AND BEYOND: ON THE BEHAVIORAL
SENSITIVITIES OF MEAN–VARIANCE EFFICIENT PORTFOLIOS

Jürgen Vandenbrouckea and Sanjiv Ranjan Dasb

This paper surveys and extends the literature on the behavioral sensitivities of mean–
variance efficient portfolios. We also compare the optimal portfolio allocation that results
from either mean–variance or behavioral optimization. Near equivalence is concluded
in case of normally distributed returns, based on the analytical expression of a general
performance measure. The analysis contributes to a further exploration of the link between
the mean–variance framework and insights from behavioral finance, and particularly
expands one’s capabilities to construct client-centric portfolios. Program code in Python
for all the mathematics in the paper is also provided.

1 Introduction

The seminal work of Markowitz (1952) on port-
folio construction has shaped an entire business.
His mean–variance framework derives the portfo-
lio composition that yields the highest expected
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return, being the measure of reward, and opti-
mally aligns with the investors’ attitude towards
variance, as a measure of risk. However, the
money management industry currently experi-
ences a content-driven transformation, fueled by
insights from behavioral finance, see Lo (2017)
for a motivation. With respect to portfolio con-
struction, behavioral finance takes a different look
at risk and reward. Shefrin and Statman (2000),
for example, represent portfolios as a collection
of goals. The measure of reward is then linked to
reaching or overshooting the goal, while the mea-
sure of risk refers to the extent or the probability
of not reaching the goal.
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Exploring the link between a mean/variance
approach and a behavioral approach is relevant
because it deepens our understanding of how the
optimal asset allocation depends on the defini-
tion of risk, the definition of reward, or investor
preferences. The literature in this area deals with
either one of these aspects. For example, Das
et al. (2010) show the mathematical equivalence
between the Markowitz (1952) mean–variance
model and an optimization that maximizes the
expected return, given a probability of not reach-
ing a return target. Continuing the assumption
of normality, Levy and Levy (2004) show semi-
equivalence with respect to alternative definitions
of investor preferences. Their analysis reveals
that the efficiency sets obtained via standard risk
averse utility or via behavioral utility almost
coincide. Zakamouline (2014) uses the same
assumption of behavioral utility and finds that the
optimal portfolio allocation maximizes a perfor-
mance measure that balances upside potential and
downside risk. This suggests another equivalence
with respect to alternative definitions of both risk
and reward.

The present paper derives the analytical expres-
sion of the performance measure put forward by
Zakamouline (2014), which allows us to extend
the work of Das et al. (2010). Specifically,
we replace expected return by upside potential
as a quantification of reward in parallel to the
replacement of variance by downside risk as a
quantification of risk. The analysis then focuses
on the behavioral sensitivities of mean–variance
efficient portfolios and on a comparison of the
optimal portfolio allocation that results from
either mean–variance or behavioral optimization.

2 Mean–variance optimization linked to
behavioral portfolios

Das et al. (2010) establish the mathematical link
between mean–variance optimization and behav-
ioral portfolios. This section briefly recaps their

main results, on which we build in the remainder
is this paper.

Mean–variance optimization in the tradition of
Markowitz (1952) finds the combination of assets
that yields the highest expected return, given a
stated level of variance. Let w ∈ Rn represent
the column vector of portfolio weights for n

assets,
∑ ∈ Rn×n the covariance matrix of the n

asset returns, and µ ∈ Rn the column vector of n

expected returns. Return distributions are entirely
described by their mean and variance through the
assumption of normality. In addition, investor
preferences imply that more wealth is preferred
over less and that risk, quantified by variance, is
disliked. The mean–variance efficient asset allo-
cation for an investor with risk aversion parameter
γ is found by maximizing the following utility
function:

max
w

w�µ − γ

2
w� ∑

w

As we can see, the utility here is a function only
of the first moments of all the assets embodied
in the vector of asset returns µ and the sec-
ond moments, captured by covariance matrix of
returns

∑
. The trade-off between the first and

second moments (i.e., return versus risk) is mod-
ulated by the risk preference parameter γ . The
solution to this problem is as follows (see Das
et al., 2010, p. 316):

w∗ = 1

γ

∑−1
[
µ −

(
a − γ

b

)]

a = 1� ∑−1
µ

b = 1� ∑−1
1

(1)

where 1 ∈ Rn is a unit vector, short selling
is allowed, and full investment holds such that
w�1 = 1.

Das et al. (2010) show that the solution in
Equation (1) for the mean–variance efficient port-
folio is also obtained if the optimization problem
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is alternatively phrased in terms of behavioral
finance. The main difference is that risk is defined
as the probability of not reaching a target. Put
differently, the risk preference of the investor—
previously quantified as γ—is now implied by an
expression which states that the probability of not
reaching a portfolio return target H should at the
most equal α:

P(r < H) ≤ α (2)

Equation (2) can also be written as follows if mul-
tivariate normality of asset returns is assumed:

H ≤ w�µ + �−1(α)

√
w� ∑

w (3)

where �−1(·) is the inverse normal function. The
inequality in Equations (2) and (3) is an equal-
ity when optimality is achieved. For a specific
value of risk aversion γ in Equation (1), Equa-
tion (3) holds with equality, and this value of
γ is the “implied” risk aversion of an investor
in the mean–variance world for portfolio prefer-
ences (H, α) specified in the behavioral world.
We note that this mapping from the behavioral
world to the mean–variance world is a special
case of the behavioral portfolio theory (BPT) of
Shefrin and Statman (2000), where the assump-
tion of quadratic utility is imposed, and therefore
the portfolios lie on the efficient frontier. There is
no such requirement in BPT, as behavioral effects
may lead investors to eschew portfolios that lie on
the efficient frontier, for example, as might occur
when investors display loss aversion.

Das et al. (2010) state three main consequences
of their results. First, optimal behavioral portfo-
lios over quadratic utility specifications are also
mean–variance efficient. The framing of the prob-
lem statement, notably the definition of risk, is
hence relative, in this setting. Defining risk as
variance or alternatively defining risk as the prob-
ability of not reaching a target leads to the same
portfolio allocation. This is useful for practition-
ers as they can introduce behavioral portfolio

concepts without relinquishing mean–variance
theory. Second, each optimal behavioral portfolio
preference set implies a particular level of
risk aversion in the mean–variance world. The
seminal work of Shefrin and Statman (2000)
defines behavioral portfolios as layers that are
associated with distinct goals. Das et al. (2010)
allow the linking of these distinct mental accounts
to different levels of risk aversion. The third con-
sequence of their analysis is most relevant in
the current context. Das et al. (2010) demon-
strate how, for a given level of risk, the optimal
mean–variance portfolio maps on a multiple of
H, α combinations that yield optimal behavioral
portfolios. We extend this conclusion beyond the
mere definition of risk by linking the H, α com-
bination to a behavioral performance measure.
This implies that the equivalence between mean–
variance and behavioral portfolio optimization
continues to hold if we redefine the trade-off
between risk and reward.

3 Upside potential and downside risk

This section starts by presenting a general perfor-
mance measure. Like any performance measure,
the intention is to quantify the balance between
risk and reward. As in behavioral portfolio the-
ory, we define risk in terms of downside risk
rather than variance. Similarly, reward is defined
in terms of doing better than a predefined target,
referred to as upside potential. The performance
measure exhibits particular properties in case of
optimal portfolios obtained with Equation (1)
from the previous section.

Assume a distribution of returns ri with i =
1, . . . , N. Furthermore, let the return level H

distinguish between above- and below-target
returns. Now define the upside potential of the
distribution as

UP(r, H) = 1

N

N∑
i=1

max(0, ri − H) (4)
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and the downside risk of the same distribution as

DR(r, H) = 1

N

N∑
i=1

max(0, H − ri) (5)

The ratio UP(r,H)/DR(r, H) is motivated by
Shadwick and Keating (2002) as a universal per-
formance measure. A generalized version that
includes risk preferences, potentially different
for above- and below-target returns, is provided
by Farinelli and Tibiletti (2008). Zakamouline
(2014) demonstrated the validity of the per-
formance measure to rank return distributions,
regardless of any distributional assumptions.

We will now return to the assumption that the
portfolio returns ri are normally distributed with
mean µp = w�µ and standard deviation σp =√

w� ∑
w. In this case the equation for upside

potential and downside risk has an analytical solu-
tion. To see this, first note how the upside potential
defined in Equation (4) can be written as the prod-
uct of the average above-target return and the
probability of an above-target return:

UP(r, H) =
∑N

i=1 I(ri > H)

N

·
∑N

i=1 max(0, ri − H)∑N
i=1 I(ri > H)

(6)

with indicator function I() equal to 1 if the
condition between the brackets is met and 0 other-
wise. Expression (6) can be written in continuous

terms as

UP(r, H) = P(r > H) · E(r − H | r > H) (7)

A similar reformulation holds for downside risk

DR(r, H) = P(r ≤ H) · E(H − r | r ≤ H) (8)

In case of normally distributed returns ri the
expected or average below-target return is cal-
culated as:

E(H − r | r ≤ H)

= (H − µp) + σpφ[�−1(α)]
α

(9)

with α = P(r ≤ H) as in the previous section,
�() the cumulative standard normal distribution,
and φ() the density function of the standard nor-
mal distribution. Substitution of Equation (9)
in Expression (8) yields a closed form for the
quantification of downside risk

DR(r, H) = (H − µp)α + σpφ[�−1(α)] (10)

3.1 Numerically verify the solution for DR

See that, assuming normality, Equation (5) may
be written as

DR(r, H) = E[max(0, H − r)]

=
∫ H

−α

(H − r)φ(r)dr (11)

We check this numerically as follows using
the following parameter choices: µp = 0.06;
σp = 0.15; H = −0.05; and α = �(H). The
code below shows that this is indeed correct!

In [1]: %pylab inline
import pandas as pd

Populating the interactive namespace from numpy and matplotlib

In [2]: #Calculations using Python
from scipy.stats import norm

mu_p = 0.06
sigma_p = 0.15
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H = −0.05
alpha = norm.cdf((H-mu_p)/sigma_p)
print(’alpha=’,alpha)
DR_eqn10 = (H - mu_p)∗alpha + sigma_p ∗ norm.pdf
(norm.ppf(alpha))
print (’DR_eqnl0=’,DR_eqnl0)

from scipy.integrate import quad
DR_eqn10_check = quad(lambda x: (H-x)*norm.pdf
(x,mu_p,sigma_p),−10, H)
print(’DR_eqn10_check=’,DR_eqn10_check[0])

alpha= 0.23167757463479827
DR_eqn10 = 0.020247905834249767
DR_eqn10_check= 0.02024790583424977

Finally, we calculate this expression for an opti-
mized portfolio we know from Equation (3) that
µp − H = σp · �−1(α) and we can write

Equation (10) as

DR(r, H) = σP · �−1(α) · α

+ σp · φ[�−1(α)] (12)

In [3]: #Check the equations above

DR_eqn11_check = sigma_p*norm.ppf(alpha)*alpha + sigma_p*norm.pdf
(norm.ppf(alpha))
print(’DR_eqn11_check=’,DR_eqnll_check)
DR_eqn11_check= 0.020247905834249767

3.2 Deriving upside potential

The upside potential is found by exploiting the
general property UP(r, H)−DR(r, H) = µp−H :

UP(r, H) = σp · �−1(α)

· (α − 1) + σp · φ[�−1(α)] (13)

This corresponds to the integral formulation

UP(r, H) = E[max(0, r − H)]

=
∫ ∞

H

(r − H)φ(r)dr (14)

In [4]: #Check the equations above from first principles using integration

UP_eqn12 = sigma_p*norm.ppf(alpha)*(alpha-1)
+ sigma_p*norm.pdf(norm.ppf(alpha))
print(’UP_eqn12=’,UP_eqnl2)
from scipy.integrate import quad
UP_eqn12_check = quad(lambda x: (x-H)*norm.pdf(x,mu_p,sigma_p),H,10)
print(’UP_eqn12_check=’,UP_eqn12_check[0])

UP_eqn12=0.13024790583424978
UP_eqn12_check=0.13024790583424978
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4 A performance metric

As a result, the performance measure of the
optimized portfolio simplifies into

� = UP(r, H)

DR(r, H)

= �−1(α) · (α − 1) + φ[�−1(α)]
�−1(α) · α + φ[�−1(α)] (15)

Note that Equation (15) does not include the target
level H . This is an interesting observation, given
that Das et al. (2010) map any given level of risk
aversion on a multiple of (H, α) combinations.
What does this mean? Of course, the mathemati-
cal relationship of Das et al. (2010) between risk
aversion coefficient γ and a (H, α) pair contin-
ues to hold. However, while any γ maps onto
a multiple of (H, α) combinations, the perfor-
mance measure that corresponds to any of these
portfolios only depends on α, not on H . Or alter-
natively, the performance measure depends on H ,
not on α. The intuition for this comes from the fact
that once a specific portfolio with a given return–
risk trade-off, embodied in (µp, σp) is chosen,
then α and H are tied together from the fact that
�[(H − µp)/σp] = α. We may in fact write
α(H), i.e., probability becomes a function of the
threshold H . But note that there are many (µ, σ)

pairs that satisfy the BPT conditions stipulated by
(H, α).

We note the following properties of �:

(1) The performance measure � may be com-
puted ex-ante or ex-post. When the portfolio
is established the forecast (µp, σp) may be
used to determine the projected � upfront.
Here, normality may be assumed, if only for
convenience. Ex-post, the measure may be
computed directly using the series of returns
from Equations (4) and (5).

(2) If normality is not to be assumed, then Equa-
tions (14) and (11) may be used instead with
the PDF φ() replaced by the density function

for any other probability function, or even an
empirical density function.

(3) Because of the use of the normal distribution,
the measure � does not explicitly contain the
parameter σp. However, this may not be true
for other distributions.

Under optimality, as we have seen already, the
constraint Equation (3) is exactly satisfied:

H = µp + �−1(α)σp (16)

where µp = w� · µ and σp = √
w� · ∑ ·w.

Therefore, fixing µp and σp, we get a huge collec-
tion of pairs of (H, α) that may be satisfied by the
same set of (µp, σp). This is shown in Figure 1.

Now consider Figure 2, with two different return
distributions. The distribution in the upper panel
is derived for a risk aversion parameter γ1, while
the distribution in the lower panel is derived for
a risk aversion parameter γ2. The shape and posi-
tioning of the distributions reveal that γ1 yields an
optimized portfolio with higher mean and higher
variance than γ2.

Figure 1 Alternate (H, α) for the same distribution.
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Figure 2 (H, α) combinations with common α for two different return distributions for the same distribution.

Figure 2 highlights in both distributions the (H,

α) combination with common α. Equation (15)
implies that the two distributions of Figure 2
exhibit the same balance between upside potential
and downside risk when evaluated at α, regard-
less of the difference in mean or variance. This
facilitates any comparison between optimized
mean–variance and behavioral portfolios. We
elaborate on this comparison in the next section.

5 Behavioral sensitivities of mean–variance
optimized portfolios

In this section we investigate the sensitivities of
mean–variance optimized portfolios with respect
to parameters related to behavioral theory. We
exploit the result that concluded the previous
section and expands the relevance of Das et al.
(2010). Asimplified three-asset example is copied
from Das et al. (2010) to perform the analysis. The
assets have a mean vector and covariance matrix
of returns as follows:

µ =



0.05

0.10

0.25


 (17)

∑
=




0.0025 0.0000 0.0000

0.0000 0.0400 0.0200

0.0000 0.0200 0.2500


 (18)

Figure 3a plots the expected return of the optimal
portfolio for alternative pairs of H and α, with
H the target level and α the probability of not
reaching the target. Figure 3a replicates Figure 4,
page 323 of Das et al. (2010). The value for H

is −5%, −10%, or −15%. Corresponding thresh-
old probabilities are 0.15, 0.05, 0.20, respectively.
Note that in all of these cases a return of −4% is
considered “above target” and as such contributes
to the upside potential. With H < 0 the investor
attitude implies a true focus on downside risk.
Given these values for H , we observe that the
optimal portfolio comes with a higher expected
return if the investor allows for a higher α. Put
differently, the return distribution of the opti-
mal portfolio has a higher expected value (and
a higher variance) if the investor is more tolerant
with respect to reaching a negative return target.
Equivalently, we observe in Figure 3a that the
expected return increases if the investor, given
the tolerance in terms of α, sets a less ambitious
return target H < 0. The program code for the
example follows.
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In [5]: #GENERATE AND CHECK SOLUTION HERE
from scipy.optimize import fsolve, brute, minimize

MU = matrix([0.05,0.10,0.25]).T
SIG = matrix([[0.0025,0.0,0.0], [0.0,0.04,0.02],

[0.0,0.02,0.25]])

def CONSTRC(gam,H,alpha,MU,SIG):
wuns = matrix(ones(len(MU))).T
Sinv = inv(SIG)
a = float(wuns.T.dot(Sinv).dot(MU))
b = float(wuns.T.dot(Sinv).dot(wuns))
cvec = MU - wuns∗float((a-gam)/b)
w = Sinv.dot(cvec)∗float(1.0/gam)
return float(w.T.dot(MU) + norm.ppf(alpha)∗sqrt
(w.T.dot(SIG).dot(w)) - H)

def GAM(H,alpha,MU,SIG):
sol = fsolve(C0NSTR,0.l,args=(H,alpha,MU,SIG))
return sol[0]

def WTS(H,alpha,MU,SIG):
gam = GAM(H,alpha,MU,SIG)
wuns = matrix(ones(len(MU))).T
Sinv = inv(SIG)
a = float(wuns.T.dot(Sinv).dot(MU))
b = float(wuns.T.dot(Sinv).dot(wuns))
cvec = MU - wuns∗float((a-gam)/b)
w = Sinv.dot(cvec)∗float(1.0/gam)
return w

In [6]: #Case 1: (test)
H = −0.10; alpha = 0.05
gam = GAM(H,alpha,MU,SIG)
print(“Risk Aversion (gamma) = ”,gam)
wts = WTS(H,alpha,MU,SIG)
print(“Weights = ”)
print(wts)

Risk Aversion (gamma) = 3.795014902838235
Weights =
[[0.53943223]
[0.2656202]
[0.19494757]]

In [7]: #THREE CASES
H_list = [-0.10, -0.05, -0.15]
alpha_list = [0.05, 0.15, 0.20]

Figures that follow are presented in two parts: (i) code to generate the figure, and (ii) the
figure itself. The code for the figures is presented first on the following page.
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CODE FOR FIGURE 3a
In [8]: figure()

H_list = [−0.10, −0.05, −0.15]
A = linspace(0.05,0.30,30)
for H in H_list:

mu_p = []
for alpha in A:

w = WTS(H,alpha,MU.SIG)
mu_p = append(mu_p,float(w.T.dot(MU)))

plot(A,mu_p); grid(); xlabel (’$P(r<H)$’);
ylabel(’Expected portfolio return ($µ_p$)’)

legend([’H = −10%’,’H = −5%’,’H = −15%’])
show()

CODE FOR FIGURE 3b
In [9]: figure()

H_list = [−0.10, −0.05, −0.15]
A = linspace(0.05,0.30,30)
for H in H_list:

gam_p = []
for alpha in A:

gam_p = append(gam_p,GAM(H,alpha,MU,SIG))
plot(A,gam_p); grid(); xlabel(’$P(r<H)$’);
ylabel(‘Risk aversion ($γ$)’)

legend([’H = −10%’,’H = −%5’,’H = −15%’])
show()

The optimal portfolios that make up Figure 3a all
come with a distinct degree of risk aversion. The
corresponding level of risk aversion is shown in
Figure 3b, again as a function of (H, α) pairs.

Figure 3a The expected return of optimized port-
folios as a function of not reaching a target. The
target level that distinguishes between gains and losses
equals −5%, −10%, or −15%.

We logically observe an inverse relation between
the expected return of the optimal portfolio in
Figure 3a and the degree of risk aversion in

Figure 3b The implied risk aversion parameter of
optimized portfolios as a function of not reaching a tar-
get. The target level that distinguishes between gains
and losses equals −5%, −10%, or −15%.
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Figure 3b. For this reason the curves in Figure 3b
are downward sloping. In addition, more negative
levels of H map on to more risk tolerant investors.
For example, the curve for H = −15% is
situated the highest in Figure 3a and the lowest
in Figure 3b.

Negative values for the target level H , as shown in
Figures 3a and 3b, focus on the tolerance toward
negative scenarios. We next focus our attention on
positive values for the target level H . This can be
equally relevant for any investor. Or, a behavioral
portfolio might contain mental accounts that span
a range of target levels H .

In addition, an examination of the sensitivities
in case of higher target levels for H will sharpen
our understanding. This is because it makes sense
to consider higher levels for α as H increases.
In Figures 3a and 3b the value for α stopped
at 30% because investment goals that are per-
mitted to fail a target of −5% or −15% with
a probability above 30% make little economic
sense. However, it is realistic to consider a 40%
probability of not reaching the target in case such
target is set at +15%, for example. Note that for
α = 50%, Equation (15) implies that the distribu-
tion of the optimal portfolio satisfies UP(r, H) =
DR(r, H). And since it holds for any portfolio that
UP(r, H)−DR(r, H) = µp−H , the optimal port-
folio additionally has µp = H for α = 50%. Put
differently, due to the assumption of normality the
expected return of the optimal portfolio equals the
target level H if α = 50%.

For α < 50%, the optimal portfolio exhibits
upside potential that exceeds downside risk. For
this reason we will ignore levels α > 50% even
in case we consider large positive values H .
Figures 4a and 4b plot the results for targets of
10%, 15%, and 20%. The tolerance level of not
meeting the target now ranges from 35% to 50%.

The curves in Figure 4 exhibit a different slope
compared to the curves in Figure 3. Figures 4a

Figure 4a The expected return of optimized port-
folios as a function of not reaching a target. The
target level that distinguishes between gains and losses
equals 10%, 15%, or 20%.

Figure 4b The implied risk aversion parameter of
optimized portfolios as a function of not reaching a tar-
get. The target level that distinguishes between gains
and losses equals 10%, 15%, or 20%.

and 4b confirm that a more ambitious positive
target increases the expected return of the opti-
mal portfolio and implies more risk tolerance,
given the probability of not reaching the positive
target. The curve that corresponds to a target of
20% is positioned on top in Figure 4a because
of the high expected return and at the bottom
in Figure 4b because of the low-risk aversion.
Finally, note how in Figure 4a the expected return
of the optimized portfolio indeed converges to the
target level H as α moves toward 50%.
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CODE FOR FIGURE 4a
In [10]: figure()

H_list = [0.10,0.15,0.20]
A = linspace(0.35,0.50,30)
for H in H_list:

mu_p = []
for alpha in A:

w = WTS(H,alpha,MU,SIG)
mu_p = append(mu_p,float(w.T.dot(MU)))

plot(A,mu_p); grid(); xlabel(’$P(r<H)$’)
ylabel(‘Expected portfolio return ($µ_p$)’)

legend([’H = +10%’, ’H = +15%’, ’H = +20%’])
show()

CODE FOR FIGURE 4b
In [11]: figure()

H_list = [0.10,0.15,0.20]
for H in H_list:

gam_p = []
for alpha in A:

gam_p = append(gam_p,GAM(H,alpha,MU,SIG))
plot(A,gam_p); grid(); xlabel(’$P(r<H)$’);
ylabel(’Risk aversion ($γ$)’)

legend([’H = +10%’, ’H = +15%’, ’H = +20%’])
show()

6 Redefining the optimization

The previous section summarizes the return dis-
tribution of mean–variance efficient portfolios by
means of a performance measure that quantifies
the upside potential per unit of downside risk. In
this section we analyze whether the same optimal
portfolio, and hence return distribution, would
result if we redefine the optimization directly into
a problem that maximizes upside potential, given
the same level of downside risk. DeGiorgi (2011)
and Cumova and Nawrocki (2014) investigate
the link between mean–variance efficiency and
behavioral portfolio theory by means of a simi-
lar alternative risk–reward formulation. DeGiorgi
(2011) showed how behavioral portfolios explain
the observed violation of the two-fund separation
property of mean–variance efficient portfolios.
The analysis of Cumova and Nawrocki (2014)
compares the efficient frontier in both settings. We
will focus on the stability of the optimal portfolio
allocation, or lack thereof.

The analysis proceeds as follows.

• First, we simulate returns for three assets that
are considered to be included in the portfolio.
The return characteristics of the assets are cop-
ied from the example in the previous section.

• Given these simulations, the second step is
to seek the asset allocation that maximizes
w�µ − γ

2

√
(w� ∑

w). We find the optimal
combination after considering all weighting
schemes that exclude short selling, as in Das
and Statman (2013). Put differently, we exam-
ine all combinations (w1, w2, w3) with 0 ≤
w1 ≤ 1, 0 ≤ w2 ≤ 1, 0 ≤ w3 ≤ 1 and
w1 + w2 + w3 = 1. We let w1, w2, and w3

vary in steps of 1%. Obviously this yields the
same result as Equation (1) in case the lack of
short selling turns out not to be binding.

• Step three calculates the downside risk of the
optimal portfolio found in step two. We use
Equation (5) to perform the calculation.

Fourth Quarter 2018 Journal Of Investment ManagementNot for Distribution



90 Jürgen Vandenbroucke and Sanjiv Ranjan Das

• Step four again examines all combinations
(w1, w2, w3) but now to detect the portfolio
allocation that maximizes the upside potential
according to Equation (4) for a downside risk
that at the most equals the downside risk of step
three.

• The last step uses the downside risk of the
mean–variance efficient portfolio as a bound-
ary condition when maximizing the upside
potential.

In order to make the analysis more specific we
consider three different investment goals, repre-
sented by different levels of risk aversion to start
the optimization. Similar to Das et al. (2010)
we assume a retirement portfolio, an education
portfolio and a bequest portfolio which show
up in Table 1 with a decreasing level of risk
aversion. For each of the portfolios we start by
using Equation (1) to find the closed-form opti-
mal allocation as a reference. This allocation is
indicated in Table 1 as composition (A). Note

how the weight of asset 1 falls in parallel with
the level of risk aversion. Asset 1 has the low-
est expected return and the lowest variance. The
opposite can be observed for the most risky asset
3. Composition (B) in Table 1 is for each portfo-
lio found as the mean–variance efficient portfolio
based on the simulations. We use 12,500 random
drawings and apply the antithetic technique to
obtain 25,000 simulations of 1 year returns. Equa-
tions (5) and (6) generate respectively the upside
potential and downside risk of the return distribu-
tion that corresponds to this allocation (B). The
downside risk of the mean–variance efficient allo-
cation is indicated in Table 1 as “DR” and serves
as a boundary condition for the final step. The
exercise ends by seeking the allocation that max-
imizes the upside potential for a downside risk at
the most equal to the boundary level. The result is
labeled “UP” in Table 1. Program code for Table 1
follows, and is based on analytical results, with
numerical implementations for optimization and
integration, achieved without simulation.

In [12]: # Program code to generate Table 1
#NUMERICAL OPTIMIZATION WITH NO SHORT SELLING
from scipy.optimize import minimize
def obj_fn(w,cv,mu,gam):

res = w.T.dot(mu) − (gam/2.0)∗(w.T.dot(cv).dot(w))
return float(−1.0*res[0])

cons = ({’type’: ’eq’, ’fun’: lambda x: float(sum(x)−1.0)},
{’type’: ’ineq’, ’fun’: lambda x: float(min(x)−0.0)}

)

In [13]: #THREE CASES
H_list = [-0.10, -0.05, 0.10]
alpha_list = [0.05, 0.15, 0.41]
cv = SIG
mu = MU

#GAM = [3.795, 2.7063, 1.8249]
wO = matrix([0.3,0.3,0.4]).T
GAM = linspace(0.1,10,1000)
ww = []
gg = []
for j in range(3):

H = H_list [j]; alpha = alpha_list[j]

Journal Of Investment Management Fourth Quarter 2018
Not for Distribution



Risk, Reward, and Beyond: On The Behavioral Sensitivities of Mean–Variance Efficient Portfolios 91

for g in GAM:
sol = minimize(obj_fn,wO,args = (cv,mu,g),
method = “SLSQP”,constraints = cons)
w = sol.x
#BPT Constraint satisfied or not
chk = abs(w.T.dot(mu) + norm.ppf(alpha)∗sqrt
(w.T.dot(cv).dot(w)) − H)
if chk < 0.001:

wstar = w
gstar = g

ww = append(ww, wstar)
gg = append (gg, gstar)

In [14]: print(“Retirement portfolio wts: ”,ww[:3].round(4))
print(“Education portfolio wts: ”,ww[3:6].round(4))
print(“Bequest portfolio wts: ”,ww[6:9].round(4))
print(“Implied risk aversion (gamma): ”,gg)

Retirement portfolio wts: [0.5418 0.2646 0.1936]
Education portfolio wts: [0.3848 0.3467 0.2685]
Bequest portfolio wts: [0.1061 0.4928 0.401]
Implied risk aversion (gamma): [3.81621622 2.73603604 1.82432432]

In [15]: #Generate the table
results = zeros((9,7))
for j in range(3):

w = ww[j∗3:(j∗3+3)]
mu_p = w.T.dot(mu)
sigma_p = sqrt(w.T.dot(cv).dot(w))
i = 0
for H in [−0.2, −0.15, −0.1, −0.05, 0.0, 0.05, 0.1, 0.15, 0.2]:

results[i,0]=H
DR = quad(lambda x: (H-x)*norm.pdf(x,mu_p,sigma_p),
−10,H)[0]*100
UP = quad(lambda x: (x-H)*norm.pdf(x,mu_p,sigma_p),
H,10)[0]*100
results [i,j+j+1]=DR; results[i,j+j+2]=UP
i = i+1

results = pd.DataFrame(results)
results.columns=[“H”,“Retirement_DR”,“Retirement_UP”,
“Education_DR”,“Education_UP”, “Bequest_DR”,“Bequest_UP”]
results

Table 1 reports for each portfolio the targeted
downside risk and the optimized upside potential
in case of target returns H ranging from −20% to
20%. Note how the downside risk increases when
reading from top to bottom and when reading
from left to right. From top to bottom the down-
side risk increases because there is an increasing

likelihood of realizing a return below the increas-
ing target H . The distributional assumption of
the underlying asset returns impacts this con-
clusion. From left to right the downside risk
increases because the optimal return distribution
is more dispersed due to the increasing level of
risk tolerance.
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Table 1 Results of mean–variance and upside potential, downside risk portfolio optimization.

RETIREMENT portfolio EDUCATION portfolio BEQUEST portfolio

Risk aversion γ 3.795 2.7063 1.8249

Asset allocation (A) (B) (A) (B) (A) (B)
w1 53.94% 54% 37.87% 37% 10.82% 13%
w2 26.56% 26% 34.99% 36% 49.17% 48%
w3 19.49% 20% 27.14% 27% 40.01% 39%

H Retirement DR Retirement UP Education DR Education UP Bequest DR Bequest UP
(%) (%) (%) (%) (%) (%)

−0.20 0.03 30.22 0.16 32.26 0.75 36.23
−0.15 0.09 25.28 0.34 27.44 1.17 31.66
−0.10 0.25 20.45 0.68 22.78 1.79 27.27
−0.05 0.63 15.82 1.26 18.36 2.64 23.12

0.00 1.38 11.58 2.20 14.30 3.78 19.26
0.05 2.71 7.91 3.60 10.70 5.25 15.74
0.10 4.78 4.98 5.55 7.65 7.10 12.59
0.15 7.65 2.85 8.10 5.20 9.36 9.84
0.20 11.27 1.47 11.24 3.34 12.02 7.51

7 Conclusion

This paper contributes to a better understanding of
the link between mean–variance and behavioral
portfolios. We found optimal portfolio allocations
through an optimization that applies a definition
of both risk and reward inspired by behavioral
theory. We explored the behavioral sensitivities of
mean–variance portfolios through the analytical
expression of a general performance. The analysis
demonstrated “near” identity of mean–variance
and upside potential-downside risk optimization
in case of normally distributed asset returns.

The optimization exercise is a numerical illus-
tration of the conclusion by Levy and Levy
(2014) that in case of normality, behavioral effi-
ciency is “almost” identical to mean–variance
efficiency. In many real-life situations, how-
ever, the assumption of normality is violated.
Possibly, even on purpose, whenever portfolio

constituents are selected on the criterion of gen-
erating asymmetric return distributions. Behav-
ioral investor preferences favor positively skewed
return distributions of, for example, portfolio
insurance or options, see Barberis and Huang
(2008), Bernard and Ghossoub (2010), or Das and
Statman (2013). The article advocates pursuing
an upside potential-downside risk optimization,
regardless of the distributional properties of the
portfolio constituents.

Apart from the methodological arguments out-
lined above, DeGiorgi and Hens (2009) show
that gains of a behavioral approach are addition-
ally to be found in the client advisory process.
Upside potential and downside risk are more eas-
ily communicated to clients than expected return
or variance. In short, upside potential-downside
risk optimization contributes to what Meir Stat-
man calls “finance for normal people” (Statman,
2017).
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