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RETHINKING THE FUNDAMENTAL LAW OF ACTIVE MANAGEMENT
Jose Menchero∗

The fundamental law of active management provides a powerful framework for analyzing
portfolio diversification and risk-adjusted returns. It states that the information ratio of
an unconstrained optimal portfolio is given by the product of the information coefficient
(a measure of skill) and the square root of breadth, where breadth is the number of “inde-
pendent” bets. A basic limitation of previous formulations of the fundamental law is that
it was not possible to determine portfolio breadth for realistic portfolios under a general
covariance structure. In this paper, we present a new formulation of the fundamental law
of active management. We derive a new measure of skill, denoted the Signal Quality, and
obtain an exact closed-form expression for the square root of breadth, which we denote as
the Diversification Coefficient. Our formulation is easily applied to real-world portfolios
described by general covariance matrices. We conclude with a discussion of the transfer
coefficient, which measures the drop in portfolio efficiency due to investment constraints.

The primary objective of disciplined investing is
to achieve the highest possible risk-adjusted per-
formance. For active managers, this is measured
by the Information Ratio (IR), which represents
the portfolio outperformance (relative to a bench-
mark) divided by the risk taken to achieve the
outperformance. Asset owners also make use of
the Information Ratio, both as a key determinant
in manager selection, and for deciding the optimal
asset allocation to maximize overall risk-adjusted
performance.

∗This work was completed at Menchero Portfolio Analyt-
ics Consulting. Jose currently serves as Head of Portfolio
Analytics Research at Bloomberg.

In a pioneering work, Grinold (1989) introduced
the fundamental law of active management, in
which he decomposed the portfolio IR into a
product of two terms,

IR = IC
√

BR. (1)

The first term, which he called the Information
Coefficient (IC), represents the skill of the port-
folio manager (i.e., their ability to accurately
forecast asset returns). The second term is given
by the square root of Breadth, where Breadth rep-
resents the number of “independent” bets placed
by the portfolio manager. Grinold and Kahn
(2000) later codified this formulation in their
celebrated book, Active Portfolio Management.

92 Second Quarter 2017

Not for Distribution



Rethinking The Fundamental Law of Active Management 93

The main lesson of the fundamental law is clear:
In order to achieve high risk-adjusted perfor-
mance, the portfolio manager should play well
(high IC) and place as many independent bets
as possible (i.e., large Breadth). The fundamen-
tal law thus represents a powerful framework
for analyzing investment problems. For instance,
suppose a large-cap equity manager considers
extending a successful strategy into the small-cap
space. In theory, expanding the investment uni-
verse always leads to an increase in the expected,
or ex ante, Information Ratio. The magnitude
of the increase, however, depends on the extent
to which the new bets are truly “independent”
of the existing bets; clearly, if the two bets are
highly correlated, any benefit may be minimal.
Assuming that Breadth can be reliably estimated,
the fundamental law can help answer whether
the expected gain in risk-adjusted performance
is worth the extra costs associated with extending
the strategy to a broader universe. A similar con-
cept was explored by Goldsticker (2013), who
used the fundamental law to analyze the trade-
offs between high skill within a narrow universe,
versus lower skill across a wider universe.

It is important to bear in mind that the Information
Ratio analyzed by Grinold and Kahn represents
the maximum possible Information Ratio (ex
ante), given a set of alpha forecasts. This implic-
itly assumes that the portfolio is constructed using
mean–variance optimization, free of investment
constraints. In the real world, however, invest-
ment constraints invariably lead the manager to
hold a portfolio that differs from the theoretical
optimal portfolio.

Clarke et al. (2002) provided an important gen-
eralization to the fundamental law by intro-
ducing the notion of the Transfer Coefficient
(TC), which quantifies the drop in portfolio
efficiency due to investment constraints. The fun-
damental law, stated in its generalized form, is

given by

IR = TC · IC
√

BR, (2)

where IR is the Information Ratio of the portfolio
held by the manager, IC is the manager’s Informa-
tion Coefficient, and BR is the Breadth. Note that
TC = 1 for the unconstrained optimal portfolio,
whereas TC < 1 for all other portfolios.

The Transfer Coefficient represents an impor-
tant tool for evaluating the impact of investment
constraints. For instance, unconstrained optimal
portfolios often contain negative weights in secu-
rities that cannot be shorted under the long-only
constraint. The Transfer Coefficient enables the
manager to quantify the impact of this constraint
on portfolio efficiency. More specifically, by
comparing Transfer Coefficients across different
sets of constraints, the manager can evaluate the
impact of lifting a particular constraint.

While the fundamental law provides a powerful
theoretical framework for analyzing investment
problems, to be effectively applied in practice,
skill (IC) and Breadth must be reliably estimated.
Unfortunately, under the Grinold–Kahn formu-
lation, certain unrealistic assumptions make it
difficult to estimate these quantities in practice.
For instance, Grinold and Kahn assume that the
manager has equal forecasting skill across every
asset, whereas in reality the manager may be more
skillful in certain market segments than others.
Similarly, whereas Breadth is simply equal to the
number of assets under the assumption of zero
correlation, it is not clear how to compute Breadth
under more realistic scenarios.

In this paper, we present a new formulation of
the fundamental law. Specifically, our formula-
tion consists of two main contributions. First, by
starting with the basic definition of IR, and recog-
nizing that skill represents the manager’s ability
to forecast risk-adjusted returns, we derive a new
measure of skill, denoted the Signal Quality. This
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new measure of skill allows the fundamental law
to be easily derived in exact form without rely-
ing on the set of simplifying assumptions and
approximations used by other formulations. As a
result, our new formulation is both simpler and
more general than previous formulations. Sec-
ond, our analysis allows us to derive an exact
closed-form expression for Breadth, which we
reinterpret and relabel as the Diversification Coef-
ficient. This resolves a long-outstanding practical
issue in the application of the fundamental law,
namely, how to compute the Breadth of a real port-
folio. Together, these two contributions allow the
fundamental law to be easily applied to real-world
portfolios.

The remainder of this paper is organized as fol-
lows. First, we provide a brief review of previous
formulations of the fundamental law. We then
present our new formulation of the fundamental
law. We also provide several illustrative exam-
ples showing how it can be applied in practice. We
conclude with a discussion of the Transfer Coeffi-
cient. Finally, to preserve the readability and flow
of the main text, mathematical details have been
relegated to several technical appendices.

1 Previous formulations of the
fundamental law

In this section, we briefly review previous for-
mulations of the fundamental law. We begin with
the formulation of Grinold and Kahn (2000), and
trace the development until the most recent work,
by Ding and Martin (2015).

Grinold and Kahn. The starting point in Gri-
nold and Kahn is to segment asset returns into a
benchmark component and a residual component,

rnt = βntR
B
t + ent, (3)

where rnt is the return of asset n over period t, βnt

is the beta of the asset relative to the benchmark,
RB

t is the return of the benchmark over the period,

and ent is the residual return. Note that residual
returns, by construction, are uncorrelated with the
benchmark.

Acentral result of Modern Portfolio Theory is that
if the benchmark is mean–variance efficient, then
the expected return of any asset is given by the
beta of the asset multiplied by the expected return
of the benchmark. This would imply that the resid-
ual returns are mean zero. Active managers, of
course, do not believe that the benchmark is effi-
cient. From their viewpoint, the residuals have
non-zero expected returns, denoted alpha, i.e.,

αnt ≡ E[ent]. (4)

Philosophically, the difference between passive
and active investors is that the former believe that
alphas are equal to zero, whereas the latter believe
that alphas are non-zero and can be exploited to
outperform the benchmark.

In the Grinold–Kahn formulation, given by Equa-
tion (1), the IC for a particular stock n is computed
by the time-series correlation

ICn = corr(αnt, ent), (5)

where αnt is the start-of-period forecast for the
residual return, and ent is the realized residual
return over the period.

Grinold and Kahn assume that all stocks have
the same IC. Although it is possible to relax this
rather unrealistic assumption, one then loses the
simplicity of Equation (1). In practice, managers
will often average the IC across stocks to obtain
a composite portfolio value

IC = 1

N

N∑
n=1

ICn. (6)

Another important element of the Grinold–Kahn
formulation is to assume that the stock alphas
adhere to a certain structure. More specifically,
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the alphas are assumed to be of the form

αn = σn · IC · zn, (7)

where σn is the volatility of stock n, and zn is a
z-score for the stock, standardized to have mean
zero and unit variance. Equation (7) represents the
famous scaling rule described by Grinold (1994),
known as “alpha equals volatility times IC times
score.”

One shortcoming of the Grinold–Kahn formula-
tion is that unless the assets are strictly uncorre-
lated, it is unclear how to compute Breadth. Many
practitioners incorrectly assume that the Breadth
represents the number of stocks in the portfolio,
which would only be true if the residual returns
were mutually uncorrelated. In practice, making
this rather unrealistic assumption typically results
in overly optimistic Information Ratios.

It is also important to stress that the alpha scal-
ing rule, given by Equation (7), is not universally
applicable. The form of this scaling rule results
from estimating alphas by a time-series regression
of asset returns against the z-scores. Neverthe-
less, some practitioners blindly apply the rule,
even when inappropriate. Specifically, if alphas
are not estimated by time-series regression, there
is no basis for applying the alpha scaling rule. For
instance, a portfolio manager may bucket stocks
into five groupings: strong buy, buy, hold, sell,
and strong sell. The manager may assign alphas
of two percent to the strong buys, one percent to
the buys, zero for holds, and so on. Although such
an alpha model may be simplistic, it nevertheless
represents a valid set of alphas since it faith-
fully reflects the views of the portfolio manager.1

Hence, rescaling the alphas in this case would not
be warranted. Another example in which alpha
rescaling is not warranted is the estimation tech-
nique described by Menchero and Lee (2015),
who used a multi-factor cross-sectional approach
to estimate stock alphas.

Buckle. Another significant advance in the
development of the fundamental law was due to
Buckle (2004), who derived a closed-form solu-
tion for portfolio Breadth. Buckle’s derivation
rested upon several key assumptions, including:
(1) return forecasts are unbiased, (2) there are no
long-run abnormal returns, (3) return forecasts
and their errors are independent, (4) return fore-
casts are normally distributed, (5) all assets have
the same IC, and (6) the IC is small. Subject to
these assumptions, Buckle shows that the Breadth
is given by

BR =
N∑

i=1

N∑
j=1

ρijP
−1
ij , (8)

where ρij is the correlation between return fore-
casts i and j, and P−l

ij denotes the element in row
i and column j of the inverse asset correlation
matrix. Buckle then goes on to illustrate the for-
mula for several idealized scenarios in which the
correlation ρij is pre-specified.

While Buckle’s formula for Breadth represents an
important theoretical result, it suffers from two
basic shortcomings. First, it rests upon a number
of assumptions, which may be violated in practice
to varying degree. Second, whereas P−1

ij may be
easily derived from the asset covariance matrix,
it is not obvious how to estimate the correlation
ρij for a general set of forecasts. This limits the
usefulness of the Buckle formula in practice.

Qian, Hua, and Sorensen (QHS). Another
important formulation of the fundamental law is
due to Qian et al. (2007). In the QHS formulation,
the IC for period t is defined as the cross-sectional
correlation between the risk-adjusted forecasts
and the risk-adjusted realizations

ICt = corr

(
αnt

σnt
,
ent

σnt

)
, (9)

where σnt represents the volatility of stock n at
time t. Note that ex post, the IC will be negative
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for periods in which the signal “didn’t work.” Ex
ante, however, the IC must be positive to justify
active management. In practice, the forecast IC is
often computed by assuming that the future will
be similar to the past, and simply averaging over
a suitably long back-testing window

IC = 1

T

T∑
t=1

ICt . (10)

The QHS formulation rests upon several assump-
tions, including: (1) the portfolio has zero factor
risk, (2) the asset-level IRs are cross-sectionally
mean zero, and (3) the risk-adjusted residual
returns are mean zero. Subject to these assump-
tions, Qian et al. derive a formula for the portfolio
IR,

IR = IC
√

N√
1 − IC2

. (11)

This result looks tantalizingly similar to the
Grinold–Kahn form, except for the appearance of√

1 − IC2 in the denominator. It should be noted
that the absence of this term in Grinold and Kahn
results from an approximation that assumes the
IC is small (as is typical for a universe of stocks),
in which case the denominator in Equation (11)
may be safely ignored.

An attractive feature of the QHS formulation is
that many practitioners prefer to think of the IC
as a cross-sectional measure across a universe of
stocks, as opposed to a time-series measure for
an individual stock as in the Grinold–Kahn for-
mulation. Despite this, it should be noted that the
validity of the QHS formulation ultimately rests
upon several assumptions that may be violated in
practice. For instance, the assumption that asset-
level IRs are cross-sectionally mean zero may be
a good approximation for a universe of stocks,
but it breaks down in other applications, such as
a fund-of-funds investment problem in which the
“assets” constitute individual hedge funds, each
with a positive IR. Another significant limitation

is the assumption of zero factor risk; in reality, vir-
tually every alpha signal will have some degree
of systematic factor risk associated with it.

Ding and Martin. Another significant contribu-
tion to the development of the fundamental law
is due to Ding and Martin (2015), who relax the
assumption of zero factor risk. They introduced
a one-factor model in which the “factor returns”
take the form of Information Coefficients. The
model is estimated by performing cross-sectional
regressions every period, leading to a time series
of Information Coefficients, ICt . They then derive
a formula for the portfolio IR,

IR = IC
√

N√
1 − IC2 + Nσ2

IC

, (12)

where IC and σ2
IC are the mean and variance

of ICt , respectively. In the absence of factor
risk, σIC = 0, and Equation (12) reduces to
Equation (11) as a special limiting case. Another
interesting limit occurs when the number of assets
approaches infinity. In this case,

IRmax = IC

σIC
, (13)

which represents the maximum attainable IR. In
other words, the Ding–Martin formulation shows
that factor risk imposes an upper bound on the
IR. This crucial insight is not evident in either the
Grinold–Kahn or the QHS formulations.

The main drawback of the Ding–Martin formula-
tion is that their analytic result was derived using
a highly idealized one-factor model. Although the
model can be extended to multiple factors, such
an extension adds considerable complexity.

2 New formulation of the fundamental law

In this section, we present a new formulation of
the fundamental law. Our only assumption is that
the N × N asset covariance matrix � and the
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N × 1 expected return vector α are known. We
first derive an exact expression for the IR of an
unconstrained optimal portfolio. We then decom-
pose the IR into a product of skill and Breadth,
offering a new interpretation for each of these
measures.

To find the optimal portfolio, we apply mean–
variance optimization. Our utility function con-
tains a reward for portfolio alpha, with a penalty
for portfolio variance,

U = h′α − λh′�h, (14)

where λ is the risk-aversion parameter. Let Y

denote the unconstrained optimal portfolio, with
the risk-aversion parameter selected to produce a
portfolio with volatility σY . The N × 1 holdings
vector of portfolio Y is given by

hY = σY�−1α√
α′�−1α

. (15)

The reader may easily verify that h′
Y�hY = σ2

Y ,
as required. It can be shown that portfolio Y has a
beta of zero relative to the benchmark. This is an
intuitive result, since any component aligned with
the benchmark adds risk to the portfolio while
leaving the portfolio alpha unchanged.

It is worth pointing out that the solution for the
optimal portfolio involves the inverse of the asset
covariance matrix. If this is computed naively
(e.g., using the sample covariance matrix), then
the matrix is not invertible whenever the number
of assets exceeds the number of time periods. To
overcome this difficulty, asset covariance matri-
ces are typically estimated using multi-factor risk
models. Such models are well behaved and invert-
ible so long as the number of time periods exceeds
the number of factors, as is typically the case.

The expected return of portfolio Y is the inner
product of the holdings vector with the alpha

vector, i.e., α′hY , thus giving

E[RY ] = σY

√
α′�−1α. (16)

Since the IR is the ratio of expected return to
volatility, the IR of portfolio Y follows immedi-
ately from Equation (16),

IRY =
√

α′�−1α. (17)

Equation (17) represents the exact expres-
sion for the IR of an unconstrained optimal
portfolio. This well-established result is given by
Equation (5A.6) in Grinold and Kahn (2000), and
serves as the launch point for our new formulation
of the fundamental law.

Next, we follow the basic structure of Grinold
and Kahn and write the portfolio IR as a product
of two terms representing skill and Breadth. How-
ever, since we offer a new interpretation for these
quantities, we also adopt a different terminology.
Specifically, we write

IRY = Q · D, (18)

where Q denotes the Signal Quality and D is the
Diversification Coefficient. The Signal Quality
specifies the strength of the risk-adjusted alphas
and is used to measure the skill of the portfo-
lio manager. The Diversification Coefficient is
akin to the square root of Breadth and represents
the gain in IR that can be achieved through opti-
mal allocation of the risk budget. Note that for
N uncorrelated assets, the Diversification Coeffi-
cient must satisfy D = √

N, consistent with other
formulations of the fundamental law.

The main job of the portfolio manager is to iden-
tify assets with superior risk-adjusted returns.
Notably, portfolio managers are not in the busi-
ness of forecasting asset correlations; this task is
typically outsourced to a third-party risk provider.
Therefore, any measure of manager skill should
be independent of asset correlations. This implies
that if we can solve for manager skill using one
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set of asset correlations, we have found manager
skill for any set of asset correlations.

Fortunately, it is quite easy to solve for skill in the
special case of uncorrelated assets. In this case,
the asset covariance matrix � is diagonal, and
Equation (17) reduces to

IRDiag
Y =

√√√√ N∑
n=1

(αn/σn)2. (19)

We now use Equation (18) to solve for the skill,
given that D = √

N for uncorrelated assets,

Q =
√√√√ 1

N

N∑
n=1

(αn/σn)2. (20)

Hence, we reinterpret skill as the root-mean-
square (RMS) of the IRs of the underlying assets,
i.e., Q = RMS(αn/σn). Note that this definition
of skill is easily applied to important use-cases
such as fund-of-funds investing, in which all
assets have positive IR.

Next, we compute the Diversification Coefficient
for the general case of correlated assets. This is
simply the ratio of IRY to the Signal Quality Q.
Hence, the Diversification Coefficient is given by

D =
√

α′�−1α

RMS(αn/σn)
. (21)

Note that the Diversification Coefficient pos-
sesses three essential properties. First, D is scale
invariant, meaning that if we scale the alphas by
any multiplicative constant, the Diversification
Coefficient remains unchanged. Second, D ≥ 1,
meaning that diversification always provides a
benefit.2 Finally, it is easy to verify that D = √

N

for the case of uncorrelated assets.

It is also interesting to note that Equation (21) can
be expressed in terms of the Rayleigh Quotient,

defined as

R(M, x) = x′Mx
x′x

, (22)

where M denotes an N × N symmetric matrix
and x represents an N ×1 vector. To ascertain the
relationship between Breadth and the Rayleigh
Quotient, we begin by writing the asset covari-
ance matrix � as a product of volatilities and
correlations,

� = σPσ , (23)

where σ is an N×N diagonal matrix of volatilities
σn, and P denotes the N × N asset correlation
matrix. The inverse of the asset covariance matrix
may thus be written as

�−1 = σ−1P−1σ−1. (24)

Next, we define an N × 1 vector of risk-adjusted
alphas

a = σ−1α. (25)

Using these relationships, Equation (21) is easily
manipulated into the following form

D2 = N
a′P−1a

a′a
. (26)

Equation (26) states that the squared Diver-
sification Coefficient (i.e., the Breadth) repre-
sents the number of assets N multiplied by the
Rayleigh Quotient involving the risk-adjusted
alphas and the inverse asset correlation matrix.
The Rayleigh Quotient has several interesting
properties, including that it is maximized when
a corresponds to the eigenvector of P−1 with
the largest eigenvalue. Further explorations of
the Rayleigh Quotient, however, are beyond the
scope of this paper.

2.1 Example 1: Optimal two-asset portfolio

In this example, we apply our formulation of
the fundamental law to analyze a fund-of-funds
manager who uses mean–variance optimization
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to allocate between two hedge funds A and B.
Five inputs are required to fully specify the opti-
mization problem: (a) the expected returns αA

and αB of the two funds, (b) the volatilities σA

and σB of the funds, and (c) the correlation ρ

between the funds. Technical details are provided
in Appendix A.

For simplicity, we assume that each fund has a
volatility of 10 percent. We further assume that
Fund A has an expected return of 11.3 percent,
versus 8.5 percent for Fund B. These values were
conveniently selected to produce a Signal Quality
of exactly 1.

We first provide some intuition on the portfolio
composition. In Figure 1, we plot the optimal
fund weights as a function of the correlation
between the funds. The weights are standard-
ized so that they sum to unity. Note that for
large negative correlation, the fund weights are
essentially equal. This is because the two funds
become near-perfect hedges for one another, thus
virtually eliminating portfolio risk while still cap-
turing the positive return premium of each fund.
As the correlation increases, the optimal portfo-
lio shifts more weight into Fund A, which has
superior risk-adjusted performance. Eventually,
if the correlation between the funds becomes suf-
ficiently large, the optimal portfolio takes a short

Figure 1 Optimal fund weights versus fund correla-
tion.

position in Fund B. This serves as an effective
hedge for Fund A, while still allowing the port-
folio to capture the return difference between the
funds.

In Appendix A, we derive exact expressions for
the expected return, risk, and IR of the optimal
two-asset portfolio. These quantities are plotted
in Figure 2 as a function of fund correlation. For
large negative correlations, the expected return
is essentially constant, since the portfolio splits
the weights nearly equally across the two funds.
The risk, however, declines to zero, since Fund B
becomes a near-perfect hedge for Fund A as
the correlation approaches −1. As a result, the
IR increases rapidly for strong negative corre-
lations. By contrast, as the correlations become
strongly positive, both the expected return and
the risk rise dramatically due to increasing lever-
age. Nevertheless, expected return increases more
rapidly than risk, causing the IR to increase for
correlations above roughly 0.90.

Next, we study how the Diversification Coeffi-
cient of the portfolio depends on the correlation
between the funds. Since Q = 1 in this exam-
ple, it follows that the Diversification Coefficient
is equal to the portfolio IR. Hence, we see
from Figure 2 that the Diversification Coefficient

Figure 2 Return, risk, and Information Ratio (IR) of
optimal portfolio versus fund correlation.
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reaches a minimum for a correlation of roughly
0.90. If the two funds are uncorrelated, the Diver-
sification Coefficient is exactly equal to

√
2, as

required for two assets. Note that for negative cor-
relations, the Diversification Coefficient is always
greater than

√
2. For this reason, we prefer not to

think of the Diversification Coefficient in terms of
the number of “independent” bets, since this lan-
guage would imply that it is possible to form more
than two independent bets from only two assets.
By contrast, it is quite intuitive that the Diver-
sification Coefficient would exceed

√
2 when

the correlations are negative, as this constitutes
a “dream scenario” in which the manager has
identified two negatively correlated funds, each
with positive expected returns.

This example illustrates the ease with which our
formulation of the fundamental law can be applied
in practice. It is worth stressing, once again, that
in previous formulations it was not clear how to
apply the fundamental law for general sets of asset
correlations, or in situations in which all assets
had positive expected returns, such as a fund-of-
funds investment problem.

2.2 Example 2: One-factor model

In this example, we study the effect of factor risk
on the Diversification Coefficient. We consider an
optimal portfolio containing N assets. We assume
that both risk and expected returns are driven by
a single underlying factor, with volatility σF . To
make the model analytically tractable, we assume
that all stocks have the same specific risk σS . In
Appendix B, we provide technical details on how
to compute the Signal Quality and Diversification
Coefficient for this problem.

In Figure 3, we plot the Diversification Coeffi-
cient versus

√
N for several values of the ratio

σF/σS . If the factor risk is identically zero,
all assets are mutually uncorrelated, in which
case D increases linearly with

√
N, as required.

Figure 3 Diversification Coefficient versus the
square root of the number of assets. The various lines
correspond to different levels of factor risk relative to
specific risk.

However, even modest levels of factor risk can
have a major impact on the Diversification Coef-
ficient. For instance, as the factor volatility
increases from zero to merely 5 percent of the
specific risk,3 the Diversification Coefficient for
a universe of 2,500 assets drops from 50 to below
20. This implies that neglecting the role of factor
risk would lead to an overly optimistic IR by more
than a factor of two. Finally, it is worth noting that
as the factor volatility goes to infinity, the Diver-
sification Coefficient goes to 1, as discussed in
Appendix B. In this case, factor risk dominates all
else and there is no benefit to diversifying across
stocks.

2.3 Example 3: Multi-factor model of US equity
market

In this example, we study the Diversification
Coefficient for a variety of factors across different
segments of the US equity market. To con-
struct the optimal portfolios, we use the Axioma
US equity risk model, which is estimated by
cross-sectional regression against a set of indus-
try dummies and 11 style factors. For analysis
purposes, we treat the 11 style factors contained
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within the Axioma model as our “alpha factors”
and construct unconstrained optimal portfolios
with unit exposure to alpha.

In Table 1, we list the 11 style factors in the
risk model, together with the annualized ex ante
factor volatilities as of April 17, 2015. We also
report the Diversification Coefficient, computed
using Equation (21), for three investment uni-
verses: the S&P 500, the Russell 1000, and the
Russell 3000. Note that for the S&P 500, sev-
eral factors (e.g., growth) have Diversification
Coefficient that exceeds the

√
N limit for uncor-

related assets. This is certainly possible, since
the Diversification Coefficient depends in part on
the correlations between the factors. For larger
universes, such as the Russell 3000, none of the
factors exceed the

√
N limit.

Another point worth highlighting in Table 1
is that higher factor volatility tends to result

in lower Diversification Coefficient. This is
broadly consistent with the findings in Exam-
ple 2. Note that there is no reason why the
Diversification Coefficient would always be
lower for high-volatility factors, since in a multi-
factor setting the Diversification Coefficient also
depends on the correlations between the fac-
tors. Finally, we note from Table 1 that larger
universes tend to have larger Diversification
Coefficient. This result is intuitive, since there
is more opportunity to diversify residual risk
in a larger universe. The size factor, however,
represents an apparent anomaly: The Diversifi-
cation Coefficient for size actually decreases as
the investment universe is expanded.

In Table 2, we explore this apparent anomaly for
the size factor, and compare it with a more typ-
ical factor, such as value. For each universe, we
build unconstrained optimal portfolios for value
and size. By construction, these portfolios have

Table 1 Annualized factor volatility and Diversification Coeffi-
cient for style factors in the Axioma US equity risk model, for
analysis date April 17, 2015. The Diversification Coefficient is
reported for three different universes: (a) S&P 500, (b) Russell
1000, and (c) Russell 3000.

Diversification Coefficient

Factor Volatility S&P 500 RU 1000 RU 3000

Dividend yield 0.77% 21.39 23.58 28.51
FX sensitivity 1.02% 23.66 29.20 37.17
Growth 0.75% 26.72 32.42 41.57
Leverage 1.15% 20.96 23.13 30.30
Liquidity 1.87% 19.61 22.99 24.91
Market sensitivity 3.47% 14.82 17.79 24.55
Momentum 2.71% 13.97 16.33 18.79
ROE 0.94% 23.92 29.84 36.80
Size 5.24% 15.98 12.99 9.47
Value 1.41% 18.53 21.98 27.33
Volatility 3.36% 17.65 21.68 22.74

SQRT(N) N/A 22.36 31.62 54.77
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Table 2 Analysis of value and size factors for analysis date April 17, 2015.

Stock Expected Portfolio Information Signal Diversif.
Factor index return volatility Ratio Quality Coeff.

Value S&P 500 1.00 1.84 0.54 0.029 18.53
Value RU 1000 1.00 1.38 0.72 0.033 21.98
Value RU 3000 1.00 1.18 0.85 0.031 27.33

Size S&P 500 1.00 4.15 0.24 0.015 15.98
Size RU 1000 1.00 3.62 0.28 0.021 12.99
Size RU 3000 1.00 3.31 0.30 0.032 9.47

unit exposure to the factor, and therefore identi-
cal expected returns, regardless of the universe.
Note, however, that in all cases the volatility
decreases as the investment universe is expanded.
This must always be the case, since the IR nec-
essarily increases as we expand the size of the
universe. This result is most easily seen by recog-
nizing that the optimal portfolio for the S&P 500
universe can be exactly replicated using the Rus-
sell 3000 universe, under the constraint that the
optimal portfolio holds zero weight in any stock
outside the S&P 500. Such constraints always
serve to reduce the ex ante IR.

In Table 2, we see that the Signal Quality for the
value factor is nearly identical across the differ-
ent investment universes. This reflects the fact
that the distribution of value exposures (i.e., the
“alphas”) is very similar across the three differ-
ent universes. The increasing IR, coupled with
a nearly constant Signal Quality, leads to an
increase in the Diversification Coefficient for the
value factor as the investment universe expands.

The situation for the size factor, however, is quite
different. In this case, we see that the Signal Qual-
ity increases dramatically as we move from the
S&P 500 to the Russell 3000. This is an artifact of
the distribution of the size exposure. For the S&P
500, the size exposures are clustered on the right-
hand side of the distribution. The Russell 3000, by

contrast, includes the left tail of the size distribu-
tion, which contains many small-cap stocks with
large negative size exposures. Hence, although
the IR increases as we expand the size of the
investment universe, the Signal Quality increases
at an even faster rate, leading to a reduction in the
Diversification Coefficient.

3 The transfer coefficient

Up to now, we have assumed that the optimal port-
folio Y is constructed free of constraints. In the
real world, however, portfolio managers are faced
with investment constraints such as turnover
limits and/or long-only restrictions. These con-
straints cause the portfolio manager to hold a
different portfolio P , which necessarily has a
lower ex ante IR. The Transfer Coefficient quan-
tifies the drop in portfolio efficiency due to these
constraints, i.e., IRP = TC · IRY .

In Appendix C, we derive an exact expression
for the Transfer Coefficient using a risk-budget
approach. We show that the TC is simply the
predicted correlation between portfolio P and
portfolio Y ,

TC = corr(RP, RY). (27)

In practice, the correlation is computed using the
same asset covariance matrix � that was used to
construct the optimal portfolio.
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Clarke et al. (2006) derived a different expression
for the Transfer Coefficient,

TC = α′hP√
α′�−1α

√
h′

P�hP

, (28)

where hP is the portfolio holdings vector.
Although this expression looks very different
from Equation (27), in Appendix C we show
that these two expressions are in fact equiva-
lent. Finally, putting everything together, we
arrive at the following exact expression for the
Information Ratio of portfolio P ,

IRP = TC · Q · D. (29)

Equation (29) represents the fundamental law in
its exact form and full generality.

4 Summary

We have introduced a new formulation of the
fundamental law of active management. By rec-
ognizing that manager skill is independent of asset
correlations, we derived an exact expression for
skill, which we denote the Signal Quality. We
showed that the Signal Quality is given by the
root-mean-square (RMS) Information Ratio of
the underlying set of assets. We also derived an
exact closed-form expression for the Diversifica-
tion Coefficient, which is analogous to the square
root of Breadth in the Grinold–Kahn formulation.
In addition, we showed that the Transfer Coeffi-
cient is exactly given by the return correlation
between the actual portfolio P and the uncon-
strained optimal portfolio Y . We included several
examples to illustrate how the fundamental law
of active management is applied in practice.

Appendix A: Optimal two-asset portfolio

To solve for the optimal portfolio of two assets A
and B, five parameters are required: the expected
returns αA, and αB of the assets, the volatilities σA

and σB of the assets, and the correlation ρ between

the assets. The Information Ratio of Asset A is
therefore IRA = αA/σA, with a corresponding
expression for Asset B.

The Signal Quality Q is the root-mean-square IR
of the two assets,

Q =
√

IR2
A + IR2

B

2
. (A.1)

The asset covariance matrix is given by

� =
[

σ2
A ρσAσB

ρσAσB σ2
B

]
. (A.2)

The optimal portfolio weights are proportional
to h = �−1α, where h is a 2 × 1 vector of
asset weights, and α is the 2 × 1 vector of asset
expected returns. Using the standard solution for
the inverse of a 2×2 matrix, we obtain the optimal
weights hA and hB,[

hA

hB

]
= 1

1 − ρ2

[
(αA/σ2

A) − (ραB/σAσB)

(αB/σ2
B) − (ραA/σAσB)

]
.

(A.3)

Note that these weights do not automatically
satisfy the full-investment constraint. In most
instances, the weights can be simply rescaled so
that the resulting portfolio weights sum to unity.
Sometimes, however, the optimal portfolio is net
short, in which case the optimal weights can never
sum to a positive number.

The expected return of optimal portfolio Y is
given by

E[RY ] = IR2
A

1 − ρ2
(1 + q2 − 2ρq), (A.4)

where q is defined as q ≡ IRB/IRA. The risk of
portfolio Y is given by

σY = IRA√
1 − ρ2

(1 + q2 − 2ρq)1/2, (A.5)
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which leads to a portfolio Information Ratio of

IRY = IRA√
1 − ρ2

(1 + q2 − 2ρq)1/2. (A.6)

Finally, the Diversification Coefficient D is
given by

D = √
2

[
(1 + q2 − 2ρq)

(1 − ρ2)(1 + q2)

]1/2

. (A.7)

Note that when ρ = 0, the Diversification
Coefficient becomes D = √

2, as required.

Appendix B: One-factor model

We consider a simple model to illustrate the
interplay between specific risk (diversifiable) and
factor risk (non-diversifiable) in portfolio opti-
mization. This model was first used by Lee and
Stefek (2008) to study the effect of factor mis-
alignment in portfolio construction. It assumes
that stock returns are driven by a single risk factor
with volatility σF , while further assuming that all
stocks have the same specific risk, denoted σS . We
consider a universe of N stocks, with covariance
matrix � given by

� = XFX′ + �, (B.1)

where X is the factor exposure matrix, F is the
factor covariance matrix, and � is the N×N diag-
onal matrix of specific variances. Since our model
includes only a single factor, X is an N×1 column
vector, and F is given by the factor variance σ2

F .

In order to find the optimal portfolio, we require
the inverse of the asset covariance matrix. The
solution is found in Grinold and Kahn (2000),

�−1 = �−1 − �−1X(X′�−1X + F−1)−1

× X′�−1. (B.2)

The inverse of the diagonal specific variance
matrix is given by

�−1 = I

σ2
S

, (B.3)

where I is the N × N identity matrix. We assume
that the risk factor X has mean zero and unit
standard deviation, which implies

X′X = N. (B.4)

Substituting these relations into Equation (B2),
we obtain

�−1 = I

σ2
S

− 1

σ2
S

(
σ2

F

Nσ2
F + σ2

S

)
XX′.

(B.5)

We assume that our alpha signal is perfectly
aligned with the risk factor, i.e.,

α = aX, (B.6)

where a represents the standard deviation of the
alpha signal.

The holdings vector hY of the unconstrained opti-
mal portfolio Y , up to an arbitrary multiplicative
constant, is given by

hY = �−1α. (B.7)

Substituting Equation (B5) and Equation (B6)
into Equation (B7), and utilizing Equation (B4),
we obtain

hY = aX

Nσ2
F + σ2

S

. (B.8)

The expected return of portfolio Y is computed as
h′

Yα, which gives

E[RY ] = a2N

Nσ2
F + σ2

S

. (B.9)

The variance of portfolio Y is given by

σ2
Y = h′

Y�hY , (B.10)

which reduces after a few lines of algebra to

σ2
Y = a2N

Nσ2
F + σ2

S

. (B.11)

The portfolio Information Ratio is given by

IRY = E[RY ]
σY

, (B.12)
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which simplifies to

IRY = a
√

N√
Nσ2

F + σ2
S

. (B.13)

The variance of stock n contains a factor compo-
nent and a specific component

σ2
n = X2

nσ
2
F + σ2

S, (B.14)

where Xn is the stock factor exposure. Substitut-
ing Equation (B14) into Equation (20) of the main
text, we obtain the Signal Quality,

Q = a

√√√√ 1

N

N∑
n=1

(
X2

n

X2
nσ

2
F + σ2

S

)
. (B.15)

Lastly, the Diversification Coefficient, given by
Equation (21) of the main text, reduces to

D =
√

N√
Nσ2

F + σ2
S

[
1

N

N∑
n=1

(
X2

n

X2
nσ

2
F + σ2

S

)]−1/2

,

(B.16)

which is independent of a, as required.

For computational simplicity, we assume that the
exposures Xn are normally distributed and use
a random number generator to numerically com-
pute the Diversification Coefficient. It is easy to
show from Equation (B16) that as the volatility
ratio σF/σS becomes extremely large, the Diver-
sification Coefficient approaches 1. In this case,
the portfolio essentially makes a single bet, with
no benefit to diversifying across multiple stocks.
In practice, of course, the opposite situation tends
to occur. That is, stock-specific risk is typically
much higher than factor volatility, thus creating
many attractive opportunities for diversification.

Appendix C: Risk-budget derivation of the
transfer coefficient

In this appendix, we derive an exact expression
for the Transfer Coefficient using a risk-budget

framework. Let P denote the portfolio under con-
sideration, not necessarily optimal. We attribute
the return of portfolio P to distinct source portfo-
lios m,

RP =
M∑

m=1

xP
mgm, (C.1)

where xP
m is the portfolio exposure to source

m, gm is the return of the source portfolio, and
M is the total number of source portfolios. The
portfolio variance is written as

σ2
P = cov(RP, RP). (C.2)

We use the x-sigma-rho risk attribution formula
of Menchero and Davis (2011) to decompose
portfolio volatility,

σP =
M∑

m=1

xP
mσmρP

m, (C.3)

where σm is the volatility of source portfolio m,
andρP

m is the predicted correlation between source
return gm and the portfolio return RP .

The IR of Portfolio P is the expected return
divided by the volatility,

IRP = 1

σP

M∑
m=1

xP
mĝm, (C.4)

where ĝm is the expected return of source portfolio
m. Next, we multiply the numerator and denomi-
nator of every term by the risk contribution of the
source,

IRP = 1

σP

M∑
m=1

xP
mĝm

(
xP

mσmρP
m

xP
mσmρP

m

)
, (C.5)

which can be rearranged as

IRP =
M∑

m=1

(
xP

mσmρP
m

σP

)(
ĝm

σmρP
m

)
. (C.6)

The first term on the right-hand side of Equa-
tion (C6) is identified as the risk weight of source
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portfolio m. Note that these risk weights, by
construction, sum to unity. The second term on
the right-hand side of Equation (C6) is identified
as the Marginal Information Ratio of source m,
which represents the stand-alone IR(ĝm/σm) of
source m, divided by the correlation ρP

m. Since
correlations are bounded by 1, the Marginal IR of
any source is always greater than or equal to the
stand-alone IR of the source. This reflects the ben-
efit of diversification. In summary, Equation (C6)
states that the portfolio IR is the risk-weighted
average of the Marginal Information Ratios.

Now consider an unconstrained optimal portfo-
lio Y , which has, by construction, the maximum
possible IR. A crucial characteristic of portfolio
Y is that all of the Marginal Information Ratios
must be equal. To see why this must be the case,
we first imagine the contrary, i.e., assume that
the Marginal IRs were not equal. In this scenario,
the portfolio IR could be increased by allocating
more risk budget to sources with high Marginal
IR, and less risk budget to those sources with low
values. For sources with high Marginal IR, the
correlation ρY

m would increase as more risk bud-
get is allocated to the source, which in turn causes
the Marginal IRs to decrease. Similarly, sources
with low Marginal IR would see their correlations
decrease as risk budget is removed, which in turn
causes these Marginal IRs to increase. We con-
tinue reallocating the risk budget until finally no
trade could further increase the portfolio IR. At
that point, the Marginal IRs must all be equal. Fur-
thermore, since the risk weights sum to unity, the
Marginal IRs must equal the portfolio IR. Hence,
we can write the IR of optimal portfolio Y as

IRY = ĝm

σmρY
m

. (C.7)

Rearranging terms, we obtain the stand-alone IR
of source portfolio m,

ĝm

σm

= IRYρY
m, (C.8)

where ρY
m is the predicted correlation between

source portfolio m and optimal portfolio Y . Since
Equation (C8) is valid for any source, this says
that the IR of any portfolio P is given by the IR of
the unconstrained optimal portfolio Y , multiplied
by the predicted correlation between portfolio P

and portfolio Y . Hence,

TC = corr(RP, RY) (C.9)

represents the exact expression for the Transfer
Coefficient.

Finally, we demonstrate that Equation (C9) is
identical to Equation (28) of the main text. The
optimal weights are given by hY = c�−1α, where
c is an arbitrary constant. Hence, the alphas are
given by

α = �hY

c
. (C.10)

Substituting Equation (C10) into Equation (28) of
the main text, we find

TC = (h′
Y�hP)√

h′
Y��−1�hY

√
h′

P�hP

. (C.11)

which simplifies to

TC = h′
Y�hP

σYσP

. (C.12)

This proves the equivalence of Equation (27) and
Equation (28) of the main text.

Notes
1 Of course, proper alphas must also satisfy the condition

that the benchmark has zero alpha.
2 This second property may be proved as follows. First,

note that the IR of the optimal portfolio is always greater
than or equal to the maximum IR of the individual assets.
Next, note that the maximum IR of the individual assets
will always be greater than or equal to the RMS of the
IRs of the assets. Hence, the numerator in Equation (21)
is always greater than the denominator, which completes
the proof.

3 Assuming 30 percent specific risk, this would correspond
to a factor volatility of 1.5 percent.
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