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PORTFOLIO DIVERSIFICATION IN CONCENTRATED BOND
AND LOAN PORTFOLIOS

Paul Kupieca,1

I develop an algorithm to approximate the loss rate distribution for fixed income portfo-
lios with obligor concentrations. The approximation requires no advanced mathematics
or statistics, only the summation of large exposures and the evaluation of binomial proba-
bilities. The approximation is model-independent and can be used after removing default
dependence using any risk modeling approach. It is especially useful for capital calcu-
lations given its inherent accuracy in the upper tail of the cumulative portfolio loss rate
distribution. The approximation provides a simple way to calculate the capital benefits of
risk mitigation or the capital needed when a marginal credit is added to a concentrated
portfolio.

1 Introduction

Compound interest and risk diversification, if not
among the most powerful forces in nature, are
still perhaps the two most important forces in
finance.1 The modern theory of portfolio diversifi-
cation began when Markowitz (1952) emphasized
the importance of efficient mean-variance port-
folios for investment management. Markowitz’s
insights lead to the development of Sharpe’s
(1964) Capital Asset Pricing Model, the first
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equilibrium model that links risk and expected
return.

Despite the fundamental importance of diversifi-
cation, it took almost 50 years after Markowitz’s
original insights before formal diversification
techniques were adopted to manage high-quality
loan and bond portfolios. For example, accord-
ing to Altman and Saunders (1998), “ [While] one
might expect that these very same [Markowitz]
techniques would (and could) be applied to the
fixed income area . . . there has been, however,
very little published work in the bond area and a
recent survey of practices by commercial banks
found fragmented and untested efforts.” (p. 1728)

There are many reasons why fixed income
managers were slow to adopt formal portfolio
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diversification models. One is that it is not so obvi-
ous how diversification works for fixed income
investments, given the abbreviated nature of their
positive return tails. Moreover, fixed income
investments often are not actively traded and most
lack the return histories necessary to construct
Markowitz efficient portfolios. Finally, fixed
income investments tend to be discrete, mean-
ing that they come in prepackaged sizes that may
be large and not easily disaggregated and traded.
This discrete, illiquid nature makes it inherently
difficult and expensive to diversify a portfolio
of fixed income claims and consequently many
credit portfolios contain obligor concentrations—
large unbalanced exposures to a borrower or
multiple borrowers. Obligor concentrations can
significantly reduce portfolio diversification.

In this paper, I develop a simple algorithm to
approximate the loss rate distribution of a fixed
income portfolio with obligor credit concentra-
tions. The intuition that underlies the approxima-
tion is easy to understand and the approximation
calculations require no advanced mathematics
or statistics—only the summation of a portfo-
lio’s largest loss exposures and an evaluation
of binomial probabilities. Unlike the so-called
“granularity adjustment” approach for measur-
ing concentration risk, this approximation is not
model-dependent.2 It can be used after remov-
ing obligor default dependence using any risk
modeling approach.

In closely related work on CDO and CDS pric-
ing, Hull and White (2004) develop a “probability
bucketing” algorithm to approximate a credit
portfolio loss rate distribution. The Hull and
White approach is also model independent and
accounts for obligor concentration risk, but it
involves substantially more computation than the
approach proposed in this paper. My approxi-
mation also provides a simpler method for cal-
culating the “value-at-risk” capital benefit of a

risk mitigation strategy or the capital increment
that is required when a new obligor is added to a
concentrated credit portfolio.

The approximation results show that, to a very
close approximation, the value-at-risk capital
required to fund a portfolio is given by the sum of
the q-largest portfolio exposures, where the port-
folio exposure of an individual obligor is defined
as the product of the credit’s loss given default
and exposure at default, normalized by the total
portfolio exposure at default. The number of large
exposures, q, that must be added up to calculate
the portfolio capitalization rate is determined by
the desired capital coverage rate (e.g. 95 or 99 per-
cent), the credits’ correlation and unconditional
probabilities of default, and the binomial cumu-
lative probability distribution. The approximation
is very accurate for typical value-at-risk capital
coverage rates.

This paper is organized as follows. Section 2
provides an abbreviated overview of the devel-
opment of formal portfolio diversification models
for high-quality fixed income portfolios including
the granularity adjustment approach for measur-
ing obligor concentration risk and the Hull and
White approach. Section 3 reviews the structure
of the Vasicek (1987, 1991) model for mea-
suring default risk diversification including the
so-called asymptotic single-factor model. Sec-
tion 4 discusses concentration risks that arise in
finite portfolios of obligors with uniform risk
and exposure characteristics. Section 5 derives
the portfolio loss rate distribution when there is
obligor concentration risk generated by varying
obligor exposure or loss rate characteristics. For
portfolios of even moderate size, the calculation
of the exact portfolio loss rate distribution may be
impractical because of its demands on computing
capacity. Section 6 introduces the approximation
algorithm which is easily computed even for a
very large number of obligors. Section 7 uses the
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approximation to construct a value-at-risk style
capital requirement for the marginal credit in a
portfolio with obligor concentrations. Section 8
summarizes the paper’s findings.

2 Background

The intuition behind portfolio diversification with
stock returns is simple. By distributing invested
funds among a broad set of individual stocks
with less than perfectly correlated returns, unex-
pectedly large positive returns on some stocks
will tend to offset unexpectedly large negative
returns on others. Consequently, the overall return
variation on a well-diversified portfolio will be
smaller than the variation of the return on a port-
folio with fewer more concentrated holdings. But
when it comes to understanding the mechanics of
diversification in a portfolio of high-quality loans
or bonds, the intuition underlying stock return
diversification falls short.

Unlike stocks, upside payoffs on bonds and
loans are capped. Performing credits do not pro-
vide an outsized gain to offset the large losses
generated by defaulting credits. Moreover, the
covariance terms needed to construct Markowitz
mean-variance efficient portfolios are not easily
estimated for loans and bonds. Unlike stocks,
most credit claims do not actively trade, and
when they are traded, day-to-day return variation
must be parsed among multiple causes including
a changing term structure of default free interest
rates, variation in the market-wide default risk
premium and changing expectations for the per-
formance of individual credits. Modeling diver-
sification for a fixed income portfolio requires a
framework that can recognize the unique features
of returns on bond and loan investments.

Practical approaches for measuring diversifica-
tion in credit portfolios began with Vasicek
(1987, 1991). Vasicek (1991) formulates a sin-
gle common factor approach for modeling default

correlations and shows that this structure becomes
especially parsimonious for a so-called asymp-
totic portfolio, a portfolio with an infinite number
of obligors with identical risk and exposure char-
acteristics. Vasicek’s asymptotic single-factor
model was embraced by bank regulators (Gordy,
2003) and, in modified form, was eventually
adopted in 2006 as an international standard for
setting minimum regulatory capital requirements
for internationally active banks. This so-called
Basel II approach sets minimum regulatory cap-
ital requirements for banks using the Vasicek
portfolio loss distribution under a specialized and
restrictive set of assumptions. Bank portfolios are
assumed to be comprised of infinitely many loans
of identical size, with identical default probabili-
ties, default correlations, and loss rates in default.
Default correlations are assumed to be driven by
a single latent common factor.

The highly restrictive assumptions of the asymp-
totic single common factor model greatly sim-
plifies the computation of the portfolio loss rate
distribution. However, the assumptions rule out
credit risk concentration in any form. There are
no outsized exposures to any single borrower and
idiosyncratic default risks are assumed to be com-
pletely diversified away. The only factor driving
portfolio performance is the single latent common
factor that in part determines individual bond or
loan defaults.

The single-factor asymptotic model’s failure to
recognize credit risk concentrations is a serious
shortcoming. Indeed, even the official Basel II
documentation states, “Risk concentrations are
arguably the single most important cause of major
problems in banks.” Despite this ominous warn-
ing, Basel capital regulations include no formal
models for analyzing credit risk concentration but
instead identify concentration risk as an issue to
be addressed by national supervisors on an ad hoc
basis.
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Various authors, including Vasicek (1991), recog-
nized the need to measure obligor concentration
risk in credit portfolios. A common approach is
to treat concentration risk as a perturbation from
the asymptotic portfolio’s loss rate distribution
function.3 In this approach, for a given real-
ized value of the common factor, concentration
risk causes the conditional portfolio loss rate to
deviate from the conditional asymptotic portfolio
loss rate. The true portfolio loss rate distribu-
tion is the sum of the asymptotic portfolio loss
rate distribution and a mean zero idiosyncratic
loss rate distribution. The conditional compos-
ite loss rate distribution including concentration
risk is approximated using a second-order Taylor
series expansion around the conditional asymp-
totic portfolio loss rate distribution. The Taylor
series approximation will differ according to
the statistical properties of the specific mod-
eling approach that is used to model default
correlation.4 Different models require different
granularity adjustments. The granularity adjust-
ment is the difference between conditional port-
folio loss rate calculated using the Taylor series
approximation and the conditional asymptotic
portfolio loss rate.

The granularity adjustment does not appear to
have been widely adopted in practice. The orig-
inal adjustment never made it into the formal
Basel Capital Accord because it was considered
too complicated to impose as a regulation.5 And
the subsequent academic literature developing the
granularity adjustment is even more complex.
It requires familiarity with advanced probability
theory before one can become comfortable with
the intuition behind the granularity adjustment
and the required calculations. The granularity
adjustment is also model-dependent, and also
dependent on the quantile of the loss distribu-
tion that is being evaluated. So different modeling
approaches for capturing portfolio default depen-
dence require bespoke granularity adjustment

factors, and even these bespoke factors vary
depending on the loss quantile of interest.

Hull and White (2004) discuss an alternative
approach for approximating a credit portfolio loss
rate distribution in the context of pricing CDOs
and nth to default CDS contracts. Rather than
focus on the Vasicek (Gaussian) copula model,
they adopt a generalized copula model to generate
default correlation. After conditioning on specific
value(s) for the common copula model factor(s),
they use a “probability bucketing” algorithm to
approximate a conditional loss rate distribution.
Similar to the approach I develop in the paper,
the Hull and White bucketing algorithm can be
used with any default correlation model by oper-
ating on conditional default rates. The user defines
a series of loss rate buckets that span the loss
space. The algorithm iterates through all the indi-
vidual credits in the portfolio. At each iteration,
it adds the credit’s conditional default probabil-
ity to an appropriate loss bucket and adjusts the
probabilities in the remaining user-defined loss
buckets.

The Hull and White approximation is flexible and
can be used in the presence of obligor concen-
tration risk. However, the approach requires that
every portfolio credit be evaluated and assigned
to a loss bucket. In other words, the entire loss
rate distribution must be approximated, which
involves substantially more computation than the
approached proposed in this paper. Moreover, the
extra work required by the Hull andWhite approx-
imation is completely unnecessary for capital
requirement calculations as my approximation is
guaranteed to be very accurate for the upper tails
of the cumulative portfolio loss rate distribution.

3 The Vasicek single-factor model of
portfolio credit risk

The Vasicek single common factor model of credit
diversification assumes that credits in a portfolio
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have an identical size, probability of default, loss
given default, and default correlation. An individ-
ual credit’s default is determined by the realized
value of a random variable, Ṽi, with the following
properties:

Ṽi = √
ρV ẽM + √

1 − ρV ẽi

ẽM ∼ φ(eM)

eid ∼ φ(ei),

E(ẽiẽj) = E(ẽMẽj) = 0, ∀ i, j,

(1)

where φ(z) represents the value of the standard
normal density function evaluated at z. Ṽi has a
standard normal distribution6 and is often inter-
preted as a proxy for the market value of the
creditor firm. The common factor in expres-
sion (1), ẽM , induces correlation among credit

defaults, ρV = Cov(Ṽi,Ṽj)

σ(Ṽi)σ(Ṽj)
. Defaults are less than

perfectly correlated because each credit also has a
latent idiosyncratic risk factor, ẽi that also governs
the default process.

Individual obligor default

Credit i is assumed to default when Ṽi < Di. The
unconditional probability that credit i defaults is
PD = �(Di), where �(z) represents the value
of the cumulative standard normal density func-
tion evaluated at z. All credits in a portfolio are
assumed to have the same unconditional prob-
ability of default, Di = D, ∀ i. Time is not an
independent factor in this model, but is implicitly
recognized through the calibration of input values
for PD.

An indicator function can be used to record the
default status of individual credits,

Ĩi =
{

1 if Ṽi < D

0 otherwise
. (2)

Ĩi has a binomial distribution with an expected
value of �(D). By construction, the indica-
tor functions of individual credits are correlated

through the common factor ẽM . The default indi-
cator function for credit i conditional on a specific
realized value of eM is,

[Ĩi|ẽM = eM] =

1 if
D − √

ρeM√
1 − ρ

< ẽi

0 otherwise

.

(3)

Expression (3) shows that the conditional default
threshold for credit i changes as the realized value
of the common factor, ẽM , changes. A positive
value of eM lowers the credit’s default threshold,
thereby decreasing the probability that the credit
will default. A negative value of eM increases the
credit’s default threshold, increasing the probabil-
ity that the credit will default. The expected value
of the conditional default indicator, conditioned
on a specific realization of the common factor, is
given by,

E[Ĩi|ẽM = eM] = �

(
D − √

ρeM√
1 − ρ

)
. (4)

Portfolio default rate distribution

Let X̃N be the portfolio default rate on a port-
folio comprised of N individual credits; that is,
the proportion of credits in the portfolio that

default, X̃N =
∑N

i=1 Ĩi

N
. X̃N is the average value

of the indicator functions of credits included in a
portfolio.

Portfolio loss rate distribution

Let EADi represent the exposure at default cre-
ated by credit i (the loan balance or maturity
value), and LGDi represent the loss rate expe-
rienced should credit i default. The loss rate at
default is measured relative to EADi.

In the asymptotic portfolio model, EADi =
EAD ∀ i, and LGDi = LGD, ∀i. Under the
assumptions that EAD and LGD are respectively
uniform across all credits, the loss rate on a
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portfolio of n credits is∑n
i=1 Ĩi EAD LGD

nEAD
= LGD X̃n. (5)

If EAD is measured as the maturity value of a
credit, then LGD X̃n represents the portfolio loss
rate from the contract maturity value caused by
portfolio defaults.7

3.1 The asymptotic single-factor model

Let [X̃N |ẽM = eM] be the proportion of n cred-
its that default in the portfolio conditional on the
realization of a specific value of the single com-

mon factor, [X̃N |ẽM = eM] =
∑N

i=1[Ĩi|ẽM=eM ]
N

.
Individual credit’s conditional indicator functions

are uncorrelated random variables since their ran-
domness is determined solely by idiosyncratic
risk, ẽi.

In an asymptotic portfolio, the number of individ-
ual credits is assumed to increase without bound,
N → ∞. The law of large numbers ensures
that the sample average of a random sample
of independently identically distributed observa-
tions converges almost surely to the expected
value of the underlying distribution as the sam-
ple sizes increases without bound. Thus, in an
asymptotic portfolio,

X̃∞ = lim
N→∞[X̃N |ẽM = eM]

−→
a.s.

�

(
D − √

ρeM√
1 − ρ

)
. (6)

(a)

(b)
Figure 1 (a) Cumulative asymptotic default rate distribution when ρ = 0.4. (b) Cumulative asymptotic default
rate disribution when ρ = 0.05.
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Expression (6) shows that, in the limit, idiosyn-
cratic default risk is completely diversified away
in an asymptotic single common factor portfo-
lio and default rate uncertainty is driven by the
common market factor alone.

The unconditional distribution function of the
asymptotic portfolio’s default rate is given by,

Pr[X̃∞ ≤ x]

= �

(√
1 − ρ�−1(x) − �−1(PD)√

ρ

)
,

x ∈ [0, 1] (7)

where Expression (7) makes use of the iden-
tity D = �−1(PD). Expression (7) implies that
an asymptotic portfolio’s default rate is a ran-
dom variable with a probability distribution that
is determined by two parameters, the credits’
unconditional default rate, PD, and the default
correlation parameter, ρ. Figures 1(a) and 1(b)
illustrate the shape of the cumulative probability
distribution for the default rate of an asymptotic
portfolio for selected default correlation values
(ρ) and unconditional probability of default (PD)
characteristics.

4 Idiosyncratic default risk in a finite
portfolio with uniform obligor exposures

Concentration risk arises when any of the assump-
tions underlying the asymptotic single common
factor portfolio model are violated. As a first
step, I consider the implications of relaxing the
assumption that the portfolio contains an infi-
nite number of individual credits. I maintain
the uniformity assumptions for EAD, LGD, PD,
and ρ, but assume that the portfolio contains
only a finite number of independent credits. The
assumption of an infinite number of indepen-
dent identically distributed credits assumes that
the portfolio achieves the maximum possible
risk reduction from diversification. In reality, all

portfolios include only a finite number of indepen-
dent credits and so all portfolios will have some
remaining idiosyncratic risk.

Conditional on a specific realized value of the
common market factor, ẽM = eM the probabil-

ity that a credit defaults is �
(�−1(PD)−√

ρeM√
1−ρ

)
.

Also, conditioned on a specific realized value
for the single common factor, individual credit
defaults are uncorrelated. The independence of
conditional defaults implies that, in a portfolio of
N individual credits, the probability of realizing
exactly n defaults is(

N

n

)(
�

(
�−1(PD) − √

ρeM√
1 − ρ

))n

×
(

1 − �

(
�−1(PD) − √

ρeM√
1 − ρ

))N−n

. (8)

The probability of experiencing a default rate less
than or equal to n

N
is equal to the probability of

experiencing n or fewer defaults in N independent
trials, or,

Pr[X̃N |ẽM = eM]

≤ n

N
=

n∑
i=0

(
N

n

)

×
(

�

(
�−1(PD) − √

ρeM√
1 − ρ

))n

×
(

1 − �

(
�−1(PD) − √

ρeM√
1 − ρ

))N−n

,

n ∈ [0, 1, 2, . . . , N].
(9)

The conditional portfolio loss rate distribution is
constructed by multiplying the conditional default
rate distribution [Expression (9)] by the uniform
loss given default rate, LGD.
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The unconditional portfolio loss rate density is
a discrete function in three-dimensions: a real-
ization of the (continuous) common factor, eM ,
a realization of the (discrete) portfolio loss rate,
LGD × XN and the probability that the specific
values of eM and LGD × XN jointly occur. This
joint probability, prob

(
eM,LGD × n

N

)
, is

prob
(
eM,LGD × n

N

)
= φ(eM)

(
N

n

)(
�

(
�−1(PD) − √

ρeM√
1 − ρ

))n

×
(

1 − �

(
�−1(PD) − √

ρeM√
1 − ρ

))N−n

for eM ∈ (−∞, ∞),

n ∈ {0, 1, 2, 3, . . . , N}. (10)

The unconditional portfolio loss rate probability
densities for two different examples of finite port-
folios with uniform obligor exposures are shown
in Figure 2. The top panel of Figure 2 repre-
sents the portfolio loss rate density for a portfolio
with 30 uniform credits, each with a PD = 0.01,
LGD = 0.5, and a default correlation parame-
ter of ρ = 0.20. While distributions in Figure
2 are discrete, the graphs include a “mesh” that
interpolates between discrete event probabilities
to improve the visualization of these densities.
The bottom panel of Figure 2 represents a port-
folio of 100 credits with the same individual
characteristics as in the top panel.

A comparison of the top and bottom panels of
Figure 2 illustrates the impact of diversification in
idiosyncratic default risk. For every possible real-
ization of the common factor, eM while the mean
of the expected portfolio loss rates are identical
in the two panels, the range of possible portfo-
lio loss rates is much larger for the portfolio with
30 obligors. The variance of the portfolio loss

rate is an inverse function of N, the number of
credits in the portfolio.8 The mean of both portfo-
lios equals PD × LGD, and the variance equals,
LGD2

N
× PD(1 − PD), and so the variance of the

loss rate on the 100 obligor portfolio is only 30
percent of the loss rate variance on the 30 obligor
portfolio.

Concentration risk, even in this simplest form —
a portfolio containing less than an infinite num-
ber of portfolio credits with uniform exposure
characteristics—has a dramatic effect on the port-
folio default rate distribution. For a second exam-
ple, consider the effect of diversification on the

Figure 2 Unconditional loss rate density for two
finite portfolios with uniform exposures.
Credits have uniform EAD, uniform LGD = 0.5, and uniform
ρ = 0.20. The portfolio pictured in the top panel has 30 individual
credits; the portfolio in the bottom panel has 100 credits.
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cumulative portfolio default loss rate that encom-
passes 99 percent of all potential portfolio losses.
Estimates of extreme critical loss distribution
values like the 99 percent quantile of the port-
folio loss rate distribution are frequently used to
set value-at-risk style minimum capital require-
ments for regulated banks and other financial
intermediaries.

Table 1 reports the loss rates associated with
the 99 percent cumulative probability loss rate
thresholds for portfolios with a different num-
ber of identical credits. Each credit is assumed
to be of identical size, with identical values for
ρ, LGD, and PD. To further simplify, I assume
LGD = 1, so Table 1 is equivalent to the default
rate distribution. The common market factor is
set equal to its 1 percent quantile value, eM =
�−1(.01) = −2.32635, which generates high
conditional default rates for the portfolio credits.
The rows in Table 1 report the 99 percent cumu-
lative default rate thresholds for finite portfolios
with different numbers of obligors. The columns
differ according to the assumed unconditional
default rate (PD) for the individual portfolio cred-
its. The last line in Table 1 reports the 99 percent

cumulative default rate threshold for an asymp-
totic portfolio.

The elements in Table 1 show that the default
rate thresholds for finite portfolios are multiple
times larger than the default rate thresholds for an
asymptotic portfolio of similar credits. From the
values reported, it is possible to construct a con-
centration risk multiplier—the ratio of the exact
critical default rate for a finite portfolio divided by
the critical value for an otherwise similar asymp-
totic portfolio. When these multipliers are applied
to the asymptotic portfolio critical default rate val-
ues, they reproduce the true critical values for
portfolios with a finite number of credits.

Table 2 reports the value of these credit risk mul-
tipliers. These concentration risk multipliers are
larger in magnitude the smaller the number of
credits in the portfolio, and the smaller is a credit’s
unconditional probability of default. For exam-
ple, for a portfolio of 50 high-quality loans with
an unconditional probability of default equal to
0.1 percent, the concentration risk multiplier is
nearly 5.5, implying that minimum economic cap-
ital needed to achieve 99 percent coverage for
the concentrated portfolio is almost 5.5 times

Table 1 Portfolio default rate that provides at least 99 percent loss coverage when credits have uniform size
and loss given default.

PD = 1 percent PD = 0.5 percent PD = 0.25 percent PD = 0.10 percent

Number of Number of Default Number of Default Number of Default Number of Default
portfolio credits defaults rate defaults rate defaults rate defaults rate

50 9 18.000 6 12.000 4 8.000 3 6.000
100 14 14.000 10 10.000 7 7.000 4 4.000
500 52 10.400 33 6.600 21 4.200 12 2.400
1,000 95 9.500 59 5.900 36 3.600 19 1.900
5,000 420 8.400 249 4.980 147 2.940 73 1.460
10,000 814 8.140 478 4.780 278 2.780 134 1.340
Asymptotic 7.525 4.301 2.412 1.096
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Table 2 Selected concentration risk multipliers when credits have uniform size
and loss given default

Unconditional probability of default
Number of
portfolio credits 1 Percent 0.5 Percent 0.25 Percent 0.1 Percent

50 2.39 2.79 3.32 5.48
100 1.86 2.33 2.90 3.65
500 1.38 1.53 1.74 2.19
1,000 1.26 1.37 1.49 1.73
5,000 1.12 1.16 1.22 1.33
10,000 1.08 1.11 1.15 1.22

Asymptotic default rate 7.525 4.301 2.412 1.096

larger than the capital suggested by the asymptotic
model.

5 Idiosyncratic risk and obligor
concentrations in a finite portfolio

When the individual credits in a portfolio dif-
fer in size (EAD) or loss given default (LGD),
then the portfolio loss rate distribution depends
not only on the portfolio default rate, but on the
exposure characteristics of the individual credits.
Under these conditions some credits will create
larger potential losses for the portfolio should they
default. Exposure differences complicate the cal-
culation of the portfolio loss rate distribution. The
logic behind the construction of the loss distri-
bution is transparent, but the calculations, while
simple, are voluminous and can quickly exhaust
desktop computer memory.

The calculation of the portfolio loss distribution
requires the enumeration and ranking of each pos-
sible loss outcome and its attached probability.
After loss outcome possibilities are enumerated,
losses must be ranked from smallest to largest.
The probabilities associated with each ranked loss
are then accumulated to generate the cumulative
portfolio loss distribution.

Table 3 Concentration risk example.

Loss in Portfolio
Credit ID EAD LGD default loss rate

1 30 0.4 12 0.100
2 20 0.4 8 0.067
3 70 0.4 28 0.233

Total 120 48 0.4

Consider a simple example of this process using
only three credits. Table 3 lists the obligors’
characteristics. Each credit is assigned a unique
identifier (credit ID). The portfolio loss rate is cal-
culated as the potential loss associated with each
credit measured as a proportion of total portfolio
exposure, LGDi×EADi∑

EADi
.

For purposes of this example, I assume each
credit has a probability of default of 5 percent
and individual obligor defaults are independent.9

The first three columns of Table 4 enumerate
the entire sample space of potential outcomes—
all the possible default combinations that could
occur. The first column enumerates the possible
default events and the second column reports the
portfolio loss rates that are generated by each spe-
cific default event. The third column reports the
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Table 4 Event space and cumulative loss rate distribution.

Event space Cumulative loss rate distribution

Credit Portfolio Probability Loss events Portfolio Cumulative
defaults loss rate of event rank ordered loss rate probability

0 0.0000 0.85738 0 0.0000 0.85738
1 0.1000 0.04513 2 0.0667 0.90250
2 0.0667 0.04513 1 0.1000 0.94763
3 0.2333 0.04513 1,2 0.1667 0.95000

1,2 0.1667 0.00238 3 0.2333 0.99513
1,3 0.3333 0.00238 2,3 0.3000 0.99750
2,3 0.3000 0.00238 1,3 0.3333 0.99988

1,2,3 0.4000 0.00013 1,2,3 0.4000 1.00000

Each credit is assumed to have a probability of default of 5 percent and individual credit
defaults are assumed to be independent.

probability that the specific event occurs. To take
a particular example, the probabilities associated
with experiencing one default are given in rows 2,
3, and 4 of the third column. When there are three
obligors, each with an independent probability of
default of 5 percent, the probability of experienc-
ing a single default is 0.135375.10 There are three
unique ways that the portfolio could experience
a single default.11 Since each of these possibili-
ties is equally likely, the probability of any one
of these outcomes is 0.135375

3 = 0.045125. The
remaining entries in column 3 of Table 4 represent
the outcomes of similar calculations for the prob-
abilities associated with specific defaults events
that involve 0, 2, and 3 credits.

The final three columns of Table 4 represent
the cumulative portfolio loss rate distribution for
the portfolio. The portfolio loss rate distribution
is calculated from the event space by ranking
the possible credit loss events (column 2) from
smallest to largest beginning with the 0 default
event. The resulting loss event ranking appears
in columns 4 and 5. The probabilities associated
with each specific event are accumulated. For
example, the probability of 0 losses is .85738. The

next smallest possible loss rate is 0.0667, and the
probability of experience a loss rate that is at most
0.0667 is 0.90250, and so on.

Obligor concentration changes some important
features of the cumulative portfolio loss rate dis-
tribution. When portfolio credits have identical
EADs and LGDs, the number of unique outcomes
in the sample space is reduced. For example,
with three credits of identical size and LGD, there
are only four possible loss rate outcomes: those
associated with 0, 1, 2, or 3 defaults. Whereas,
when the credits differ in size, LGD, or in both
dimensions, there are eight possible loss rate out-
comes. Uniformity reduces the size of the sample
space because when one credit defaults, the loss
is the same no matter which of the individual
credits defaults—and there is no need to keep
track of individual obligor performance in order
to calculate the associated portfolio loss rate.

Figure 3 compares the portfolio loss distribution
example in Table 4 with a portfolio of equiva-
lent size and total exposure, but with uniform
credits. The blue points in Figure 3 represent the
portfolio loss distribution for the portfolio with
obligor concentrations—the three-credit example
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Figure 3 Portfolio loss rate distribution with concentration risk.

from Table 4. This portfolio has total EAD of
120 and a possible worst-case loss rate of 40 per-
cent. The orange columns in Figure 3 represent
the portfolio loss distribution associated with a
portfolio comprising three independent uniform
credits, each with PD = 5 percent, EAD = 40,
and LGD = 40 percent.12 This uniform portfolio
has the same size and total loss potential as the
portfolio with obligor concentration. The num-
bers in the call-out boxes in Figure 3 represent
the number of defaulted credits associated with
each point in the respective distributions.

Figure 3 shows the reduced unique number of out-
comes in the sample space associated with the uni-
form credit portfolio relative to the portfolio with
obligor concentrations. While the two portfolio
loss distributions have two points in common {(0,
0.86), (0.4, 1)}, the uniform credit distribution has
only two possible intermediate loss rates, while
the portfolio with obligor concentration has six
possible intermediate loss rates.

A general feature associated with obligor con-
centration risk is that individual credit exposure
differences can cause events with fewer defaults
to have portfolio loss severities that exceed events
with a larger number of defaults. An example
of this phenomenon appears in Figure 4 where
the joint default of credits 1 and 2 (red square)
produces a smaller portfolio loss rate than the

default of the single credit with the largest expo-
sure (green triangle). This feature implies that
the cumulative probability associated with the
largest single default exposure in the concen-
trated portfolio will always be at least as large
as the cumulative probability of a single default
in a comparable uniform obligor portfolio. In
other words, in terms of Figure 4, the cumula-
tive probability (height) of the point inside the
green triangle will always be as large, or larger,
than the cumulative probability of the orange col-
umn associated with one default. While single
default events are equally likely regardless of their
severity, when there are obligor concentrations,
two-default events can rank below the largest
single default event.

When portfolios include obligor concentration
risk, the calculation of the loss distribution fol-
lows the logic outlined in Table 4. However, even
for portfolios with a modest number of obligors,
the number of calculations required to construct
the exact loss distribution can quickly become
unmanageable. For example, in a portfolio with
25 obligors with different exposure characteris-
tics, there are 3,268,760 unique ways the portfolio
can experience 10 obligor defaults. When there
are 100 obligors, the number of unique combi-
nations of 10 obligor defaults exceeds, 1.73 ×
1013, and the total number of unique default
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combinations in the entire event space is approx-
imately 1.27×1030. As these examples illustrate,
the full enumeration of the possible set of loss
outcomes becomes impractical except when the
portfolio has only a modest number of obligors.
This motivates the need for the approximation
outlined in the following section.

6 Obligor concentration risk and an
approximate portfolio loss rate
distribution

When portfolios with obligor concentrations
include more than a modest number of cred-
its, it becomes infeasible to enumerate the entire
sample space and construct the exact portfolio
loss rate distribution. However, it is possible to
approximate the portfolio loss rate distribution.
The approximation is computationally simple, yet
it produces reasonably accurate quantile estimates
for the true cumulative portfolio loss rate distribu-
tion, especially for quantiles in the upper tails of
the distribution—the quantiles that are typically
used to set capital allocations or regulatory capital
requirements. I will explain the intuition behind
the portfolio loss rate approximation by refer-
encing the three-obligor example in the previous
section.

When credits are uniform, after conditioning on
the common market factor realization, the uncer-
tainty in portfolio loss rate distribution is entirely
determined by the binomial distribution that spec-
ifies the probability associated with experiencing
each possible integer number of defaults. When
credits are non-uniform in size or LGD (or both),
the portfolio loss associated with “n” defaults
depends on which specific “n” credits default.
Moreover, it is also possible that the loss gen-
erated by “n+1” defaults can be smaller than the
loss generated by “n” defaults (or even “n − 1”,
“n− 2”, or “n− j” defaults) depending on which
particular credits default.

The algorithm to approximate the portfolio loss
rate distribution in the presence of obligor concen-
trations uses a specific isomorphic portfolio in the
approximation. The isomorphic portfolio has the
same number of credits, identical PD and correla-
tion parameters, the same total portfolio exposure,
and same maximum loss rate, but the individual
credits have uniform exposure characteristics.

Suppose there are N independent obligors in the
credit portfolio. Let TE represent the total portfo-
lio exposure at default; TL the maximum possible
portfolio loss; LR the maximum portfolio loss
rate, and plri the portfolio loss rate associated
with the default of credit i,

TE =
N∑

i=1

EADi;

TL =
N∑

i=1

EADi × LGDi;

LR = TL

TE
; and

plri = EADi × LGDi

TE
.

Let Plr represent the rank-ordered vector of
individual credit portfolio loss rates,

Plr = {plr1, plr2, plr3, . . . , plrN}, where,

plr1 ≤ plr2 ≤ plr3 ≤ · · · ≤ plrN.

Without loss of generality, I will assume the
portfolio loss rate attached to each credit to be
unique.13

Now consider the isomorphic credit portfolio. For
this portfolio, LGDi = LR

N
, and EADi = TE

N
. This

portfolio has the same underlying binomial proba-
bility structure and the same maximum portfolio
default rate as the credit portfolio with obligor
concentration risk.14
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Both portfolio loss rate distributions are dis-
crete. The quantile values of the isomorphic
uniform exposure distribution are defined as fol-
lows. For q ∈ [0, 1], and a set of integers,
K = {0, 1, 2, . . . , N}, the quantile q of the port-
folio loss rate distribution is the smallest portfolio
loss rate that has a cumulative probability at least
as large as q, or the loss rate kq × LR

N
, such that,

kq = inf

{
K :

k∑
i=0

(
N

i

)
PDi(1 − PD)N−i ≥ q

}
.

(11)

In Expression (11), kq represents the number of
defaults that are needed to generate a cumulative
probability at least as large as q. Depending on
the value of q selected, kq can be any integer
value between 0 and N. Finally, let Fi

(
kq× LR

N

) =∑kq

i=0

(
N

i

)
PDi(1 −PD)N−i represent the cumula-

tive probability distribution function associated
with kq defaults under the isomorphic portfolio
loss rate distribution.

The quantiles of the portfolio loss rate distribution
with obligor concentrations can be approximated
as follows. Let F(lr), lr ∈ [0, LR] represent the
cumulative probability distribution for the loss
rate on the portfolio with obligor concentrations.
Select the desired quantile q, and use Expression
(11) to solve for kq. Construct, L̂Rq,

L̂Rq =
kq∑

i=1

plrN−i+1 for plri ∈ Plr. (12)

L̂Rq is a “conservative” estimate15 for the port-
folio loss rate that generates a cumulative prob-
ability of at least q under the true cumulative
probability distribution F(lr),

F(L̂Rq) ≥ Fi

(
kq × LR

N

)
. (13)

A formal proof of this inequality is given in the
Appendix.

In plain English, the algorithm says the following:
(1) use the isomorphic distribution and solve for
the number of defaults that are required to reach
the desired quantile of the cumulative portfolio
loss rate distribution (kq defaults); (2) calculate
the sum of the kq largest individual credit portfolio
loss rates in the portfolio with obligor concentra-
tions; (3) the sum of the kq largest individual credit
portfolio loss rates will have a true cumulative
probability that is at least as large a q.

For small values of q (relatively small portfolio
loss rates) the approximation for the cumula-
tive probability associated with L̂Rq will likely
understate the true value, F(L̂Rq). However, the
approximation becomes very good as q gets large,
and it becomes exact as q approaches 1,

lim
q→1

[
F(L̂Rq) − Fi

(
kq × LR

N

)]
= 0. (14)

Expression (14) implies that for high quantile val-
ues [for example, q = 0.95, or q = 0.99], there is
very little error involved is using Fi

(
kq×LR

N

)
as an

approximation for F
(
L̂Rq

)
. Formal justification

for this claim is provided in the Appendix.

Consider a step-by-step example of the approx-
imation algorithm for a 10-credit portfolio with
obligor concentration risk. Table 5 provides the
details on the individual obligor exposure charac-
teristics. Each credit is assumed to have PD =
0.01, ρ = 0.20, LGD = 0.40, and ρ = 0.2.
Total portfolio exposure at default is 1680, and the
worst-case default losses are 672, which implies
a maximum portfolio loss rate of 40 percent.

Table 6 illustrates the approximation. The isomor-
phic portfolio is identical to the concentrated port-
folio in all characteristics except its credits have a
uniform EAD = 168. To remove default correla-
tion, I condition on the 1 percentile of the common
market factor distribution (i.e. ẽM = −2.32635).
After conditioning, defaults will be independent
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Table 5 Ten-credit portfolio with
obligor concentrations.

Credit Loss Portfolio
ID EAD in default loss rate

1 50 20 0.0119
2 100 40 0.0238
3 110 44 0.0262
4 125 50 0.0298
5 150 60 0.0357
6 170 68 0.0405
7 200 80 0.0476
8 225 90 0.0536
9 250 100 0.0595
10 300 120 0.0714

Total 1680 672 0.4

and each credit will have a conditional probability
of default equal to 0.0752508.

Using the relevant parameters, I construct the
portfolio loss rates and the cumulative probabili-
ties associated with n = {1, 2, 3, . . . , 10} defaults
under the isomorphic portfolio loss rate distribu-
tion. I calculate the loss rates associated with the
sum of the k largest individual credit portfolio
loss rates for k = {1, 2, 3, . . . , 10}. I then con-
struct the full event space for the concentrated
portfolio, rank-order the possible outcomes, and
calculate its true portfolio loss rate distribution.
The true probabilities associated with the largest
“k” exposures are reported in the Table 6 column
labeled “Concentrated Distribution Cumulative
Probability”.

Table 6 Approximating the portfolio loss rate distribution when there is obligor concentration risk.

Uniform Portfolio Concentrated Percentage
Uniform loss distribution loss rate distribution change in

Numbers portfolio cumulative from largest cumulative portfolio � Cumulative
defaults loss rate probability k exposures probability � Loss rate loss rate probability

0 0.00 0.4573 0.0000 0.4573 0.0000 0.00 0.0000
1 0.04 0.8295 0.0714 0.8850 0.0314 78.57 0.0555
2 0.08 0.9658 0.1310 0.9864 0.0510 63.69 0.0207
3 0.12 0.9953 0.1845 0.9989 0.0645 53.77 0.0035
4 0.16 0.9996 0.2321 0.9999 0.0721 45.09 0.0004
5 0.20 1.0000 0.2726 1.0000 0.0726 36.31 0.0000
6 0.24 1.0000 0.3083 1.0000 0.0683 28.47 0.0000
7 0.28 1.0000 0.3381 1.0000 0.0581 20.75 0.0000
8 0.32 1.0000 0.3643 1.0000 0.0443 13.84 0.0000
9 0.36 1.0000 0.3881 1.0000 0.0281 7.80 0.0000
10 0.40 1.0000 0.4000 1.0000 0.0000 0.00 0.0000

Portfolio loss rate distribution approximation calculations. The true portfolio exposures are listed in Table 5. For each obligor, PD = 0.01,
ρ = 0.2, and LGD = 0.4. All probabilities are conditional probabilities calculated with the common factor equal to its 1 percentile value
(−2.33). The conditional probability of default for each credit is 0.0753. The isomorphic portfolio has 10 credits, each with EAD = 168,
LGD = 0.4, PD = 0.01, ρ = 0.2 and conditional probabilities of default = 0.075. The column � Loss rate reports the portfolio loss
rate associated with the largest n exposures from the concentrated portfolio less the portfolio loss rate associated with n defaults for the
isomorphic portfolio. � Cumulative probability reports the true probability associated with the largest n exposures and the approximated
probability for n defaults using the isomorphic loss rate distribution. � Loss rate and � Cumulative probability measure the accuracy
of the approximation.

Second Quarter 2016 Journal Of Investment Management
Not for Distribution



64 Paul Kupiec

The final 3 columns in Table 6 provide infor-
mation on the accuracy of the portfolio loss rate
approximation. The column labeled � Loss rate
compares the loss rates associated k defaults
under the uniform isomorphic distribution to the
true loss rate for the k largest portfolio default
exposures. This column represents the loss rate
underestimation that occurs when the concen-
trated portfolio is modeled as a portfolio with
uniform exposures. The adjacent column to the
right expresses this loss rate estimation error as
a percentage using the uniform isomorphic loss
rate as the base. The final column in Table 6 rep-
resents the difference between the true cumulative
probabilities associated with the portfolio loss
rates generated by the largest k exposures and the
cumulative probability assigned by the approxi-
mation algorithm. Notice that as the number of
defaults increases and the quantile of the cumu-
lative probability increases, the cumulative prob-
ability approximation error (� Cumulative prob-
ability) monotonically declines to the point that
there is no measureable error in the cumulative

probability beyond n = 5 defaults. This particular
approximation is illustrated in Figure 3.

The blue points in Figure 4 represent the actual
loss rate distribution for the concentrated port-
folio. The red columns represent the loss rate
distribution of the isomorphic portfolio with uni-
form exposures. The gray columns represent the
actual points on the concentrated credit port-
folio’s loss distribution that correspond to the
sum of the largest k default exposures, for
k = 1, 2, 3, . . . , 10}. The call-out box with
arrows represent the probability approximations
that apply to each of these reference loss rates of
the true concentrated portfolio loss distribution.

Figure 5 plots the approximate probability den-
sity for a portfolio of 100 credits with obligor
concentration risk. The portfolio credits in this
example have PD = 0.01, LGD = 0.4, and
ρ = 0.2. The exposure sizes associated with
each credit are given by the sequence, EADi =
{105, 110, 115, . . . , 600}. The isomorphic port-
folio with uniform EAD has EAD = 352.50.

Figure 4 Approximating the portfolio loss rate distribution in the presence of obligor concentrations.
Graphic illustration of the approximation in Table 6. The blue points represent the true cumulative portfolio loss rate distribution
for the concentrated portfolio. The red columns represent the cumulative loss rate distribution for the isomorphic portfolio. The gray
colums represent the points on the true cumulative probability distribution associates with the defaults of the largest “k” exposures.
k = {1, 2, . . . , 10}. The call out boxes with the arrows link the approximating point on the isomorphic loss rate distribution with the true
point on the concentrtated portfolio loss rate distribution.
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Figure 5 Approximate loss rate density for a portfo-
lio with obligor concentrations.
The blue paraboloid is the approximate probability density for
the loss rate on a portfolio with 100 credits, each credit having,
PD = 0.01, LGD = 0.4, and ρ = 0.2. The portfolio EADs differ
by 5 and range from 105 to 600. The yellow paraboloid is the prob-
ability density of the isomorphic portfolio with 100 credits which
is identical to the concentrated portfolio in all respects except that
its credits have a uniform EAD = 352.50.

The yellow paraboloid in Figure 5 is the density
for the isomorphic portfolio loss rate distribution.
The blue paraboloid is the portfolio loss rate
density for the portfolio with obligor concentra-
tions. Figure 5 provides a clear illustration that
obligor concentration risk increases the portfolio
loss rates for any common factor realization. The
imbalances in the portfolio’s obligor concentra-
tions reduce the diversification of idiosyncratic
risk.

Unlike the granularity assumption, this approxi-
mation for the portfolio loss rate distribution does
not depend on the default correlation modeling
assumptions that are used to generate correlation
among defaults. Whatever mechanism used to
model common factors that drive defaults [e.g.
Vasicek model, CreditRisk+, etc], once the com-
mon factors are controlled, individual defaults
can be modeled as independent Bernoulli events
and the algorithm can be applied to approximate
the portfolio loss rate distribution in the presence
of concentration risk.

7 Value-at-risk capital for a marginal credit

Economic capital allocation decisions and regu-
latory capital requirements often use value-at-risk
to set required investment capitalization rates.16

In general, capitalization requirements are often
set so that the equity used to fund the port-
folio will not be exhausted by portfolio losses
except in exceptionally rare circumstances. Such
a rule is often operationalized by setting the share
of equity used to fund the portfolio equal to a
high quantile of the portfolio’s loss rate distri-
bution. Typical coverage rates used in capital
allocation models range between 95 and 99 per-
cent, although the Basel Committee on Banking
Supervision sets the coverage rate at 99.9 percent.

Within a value-at-risk capital framework, it is of
interest to know the additional capital that will be
needed should a new credit be added to an existing
portfolio. Under the assumptions of the Vasicek
asymptotic single common factor model, the cap-
italization rate that applies to any new credit is
independent of the composition on the portfolio
and equal to the capitalization rate for all the cred-
its already in the portfolio. This invariance arises
because idiosyncratic risk is fully diversified and
there is no additional diversification benefit from
adding an additional credit. However, in most
cases, portfolios are not asymptotic and the capi-
talization rate of the marginal credit will depend
on the composition of the existing portfolio.

In the simplest setting, where portfolio credits are
uniform in size and default risk characteristics, the
capitalization rate on a new marginal credit with
exposure and risk characteristics identical to the
credits already in the portfolio tends to decline
as the number of credits in the existing portfolio
increases. The tendency for declining capitaliza-
tion rates is upset periodically as N increases as a
consequence of the discrete nature of the default
rate distribution. Discrete jumps in the critical
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value of the default rate used to set capital cre-
ate a capitalization rate that declines with N, but
with an irregular saw tooth style pattern.

Using the notation defined earlier, the q-quantile
of a portfolio loss rate distribution is associated
with kq defaults. If equity capital is set to cover
q percent of all possible portfolio losses, the cap-
italization rate on the portfolio (and each of its
credits) will be LDG × kq

N
.

Now consider adding an additional credit to the
portfolio. For finite distributions, the loss rate
distribution is discrete, and kq may not change
for N + 1 credits. In such case, the capitaliza-
tion rate on the marginal credit, that is the change
in the total required capital for the portfolio of
N + 1 credits divided by the EAD of the new
credit is LGD× (N − 1

N

)(
kq

N + 1

)
. The marginal capital

is smaller than
(

kq

N + 1

)
because idiosyncratic risk is

better diversified in the new portfolio generating
capital savings on the original N credits. This is
accounted for by the factor N−1

N
< 1. When N

is small, the extra diversification benefit can be
large, but as N increases, the benefit of additional
idiosyncratic diversification diminishes.

As N increases, and more credits with identical
characteristics are added to the portfolio, so will
the value of kq. Binomial probabilities are asso-
ciated with the number of discrete default events,
and once a sufficient number of additional credits
are added to the portfolio, kq will increase. The
increase in kq as N increases creates a declining
sawtooth pattern in required capitalization rates.
A specific example of this sawtooth capitalization
rate pattern is illustrated in Figure 6.

When there are obligor concentrations in the
portfolio, an additional factor enters into the cap-
italization rate calculations. With concentration
risk, the value-at-risk capitalization rate is equal

to the exposure generated by the specific kq cred-
its that individually generate the largest portfolio

loss rates, L̂Rq = ∑kq

i=1 plrN−i+1

When a credit is added to the portfolio, new
portfolio loss rates must be computed for the
individual credits that are contained in L̂Rq,

plr′
j = EADj × LGDj∑N+1

i=1 EADi

, for plrj ∈ L̂Rq.

(15)

The portfolio loss rate of the newly added credit
must be calculated and compared with the portfo-
lio loss rates plr′

j of the credits in L̂Rq. If the new
credit’s portfolio loss rate is less than any plr′

j that
is included in L̂Rq, the new portfolios’ capitaliza-

tion rate is
∑N

i=1 EADi∑N+1
i=1 EADi

× L̂Rq. In this instance, the

benefit of additional diversification is measured
by

∑N
i=1 EADi∑N+1
i=1 EADi

< 1.

Should the new credit generate a portfolio loss
rate that exceeds the smallest portfolio loss rate
plr′

j in L̂Rq, the new credit will replace the
smallest loss rate, and the new larger loss rate
associated with the quantile must be calculated,
L̂R

′
q > L̂Rq. Consequently, in cases when kq

is unaffected by the addition of a new credit,
the change in the portfolio’s capitalization rate
required by the addition of a new credit is

L̂R
′
q −

( ∑N
i=1 EADi∑N+1
i=1 EADi

)
L̂Rq. (16)

Of course, in some instances the addition of a new
credit will require a unit increase in the value of
kq. In these cases L̂R

′
q will also increase because

an additional large portfolio loss rate will be added
to the sum that determines L̂R

′
q. Consequently,

the capitalization rates will exhibit a declining
sawtooth pattern, but unlike Figure 6, the jump
increments will be irregular, with a size that
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Figure 6 Idiosyncratic risk diversification for uniform credit exposures.
The capitalization rate needed to achieve 99 percent coverage of the loss rate distribution in a portfolio with N credits with equal EAD,
PD = 0.01, ρ = 0.2, and LGD = 0.4.

depends on the loss exposure concentrations in the
portfolio.

8 Conclusion

The benefit of portfolio diversification is one of
the only true “free lunches” available to investors
in equilibrium. Risk can be reduced merely by
the judicious structuring of portfolio investments.
Given the practical benefits to be gained, the aca-
demic literature offers surprisingly few practical
approaches for assessing the impact of obligor
concentration risk on the diversification of credit
risk portfolios. In this paper, I analyze obligor
concentration risk and present a new algorithm
that can be used to approximate the loss rate distri-
bution for a fixed income portfolio with credit risk
concentrations. The intuition behind the approx-
imation is easily understood using simple set
theory without the need for advanced mathemat-
ics or statistics. The approximation is independent
of the modeling structure assumed to generate
default correlation and is highly accurate in the
upper quantiles of a portfolio’s loss rate distri-
bution. Its accuracy makes it especially useful
for estimating economic capital allocations or set-
ting regulatory capital requirements for credit risk
portfolios with obligor concentration risk.

Appendix

Consider a portfolio of N credits. Assume each
credit has a probability of default of PD, and
default events are independent. The individual
credit EADs and LGDs can be arbitrary admis-
sible values

[EADi > 0, 0 ≤ LGDi ≤ 1, ∀i]. Consis-
tent with the text, define: TE = ∑N

i=1 EADi;
TL = ∑N

i=1 EADi×LGDi; LR = TL
TE

; and plri =
EADi×LGDi

TE
. Let F(LR), LR ∈ [0, 1] be the cumu-

lative probability distribution for the loss rate on
this portfolio.

Consider a hypothetical isomorphic portfolio of
N credits with uniform obligor exposure charac-
teristics. Each credit has a probability of default
of PD. Default events are independent. Each
credit has EADi = TE

N
and LGDi = LR

N
. Let

Fi(LR), LR ∈ [0, 1] represent the cumulative
probability distribution for the loss rate on this
isomorphic portfolio.

For either portfolio, the probability of experienc-
ing exactly k defaults is

(
N

k

)
PDk(1 − PD)N−k.

There are
(

N

k

)
unique combinations in which indi-

vidual credits in either portfolio can experience k

defaults. Each unique combination of k defaults
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has a probability of pk = PDk(1 − PD)N−k. For
the isomorphic portfolio, the portfolio loss rate
is identical for each of the

(
N

k

)
combinations of k

defaults.

In the isomorphic uniform obligor portfolio, the
portfolio loss rate increases monotonically with
the number of portfolio defaults. In the portfo-
lio with arbitrary credit exposure characteristics,
the portfolio loss rate need not be a monotonic
function of the number of defaults.

LetRk be the set ofM(k) = (
N

k

)
portfolio loss rates

generated by loss events with exactly k defaults,
rank-ordered (from smallest to largest) according
to the event’s total portfolio loss rate,

Rk = {elrk
1, elr

k
2, elr

k
3, . . . , elr

k
M(k)}.

elrk
1 is the minimum portfolio loss rate in Rk; it

is the smallest portfolio loss rate generated by k

defaults. Similarly, elrk
M(k) is the maximum port-

folio loss rate in Rk; the largest portfolio loss
rate that can be generated by k defaults. Each
individual event in Rk has a probability of pk.

R1 has N elements corresponding to the number
of unique ways to generate one default from the N

individual credits in the portfolio. Let R+
1 be the

set of events in {R2, R3, . . . , Rk, . . . RN} where
elrk

i ≤ elr1
N for all i, and k = {2, 3, 4, . . . , N}.

Let R1C
k = Rk\R+

1 where the notation Rk\R+
1

indicates elements in set Rk that are not in R+
1 . Let

prob(Rk ∩ R+
1 ) represent the cumulative proba-

bility of events that are in the intersection of sets
Rk and R+

1 .

The probability of observing a loss at least as large
as elr1

N is given by prob(R1 ∪ R+
1 ) = p0 + p1 +∑N

i=2 prob(Ri ∩ R+
1 ). Since Fi

(LR
N

) = p0 + p1,
and

∑N
i=2 prob(Ri ∩ R+

1 ) ≥ 0, it follows that
F(elr1

N) ≥ Fi
(LR

N

)
. That is, the probability of

experiencing a portfolio loss rate that is less than
or equal to the portfolio loss rate caused by the
default of the largest single loss exposure in the

concentrated portfolio is always greater than or
equal to the probability of experiencing one or
fewer defaults in the isomorphic uniform credit
portfolio.

In order to demonstrate, F(elr2
M(2)) ≥ Fi(2 ×

LR
N

), let R+
2 be the set of events in {R3, R4, . . . ,

Rk, . . . RN} where elrk
i ≤ elr2

M(2) for all i, and
k = {3, 4, 5, . . . , N}. Let R2C

k = Rk\R+
2 for k =

{3, 4, 5, . . . , N}.
Using the fact that, prob(R1+(R+

1 ∩R2)∪R1C
2 ) =

prob(R1 + R2), the probability of observing a
portfolio loss rate at least as large as elrM(2) is
given by prob(R1 ∪ R2 ∪ R+

2 ) = p0 + p1 +
p2 +∑N

i=3 prob(Ri ∩ R+
2 ). Since Fi

(
2 × LR

N

) =
p0 + p1 + p2, and

∑N
i=3 prob(Ri ∩ R+

3 ) ≥ 0, it
follows that F(elr2

M(2)) ≥ Fi
(
2 × LR

N

)
. In plain

language, the last inequality says that the prob-
ability of a portfolio loss rate that is less than
or equal to the portfolio loss rate caused by the
default of the largest two loss exposures in the
concentrated portfolio will always be greater than
or equal to the probability of experiencing two or
fewer defaults in the isomorphic uniform credit
portfolio.

The remaining inequalities, F(elr3
M(3)) ≥ Fi

(
3 ×

LR
N

)
, F(elr4

M(4)) ≥ Fi
(
4× LR

N

)
, . . . , F(elrN

M(N)) ≥
Fi(LR), are established by induction.

While this proves that the approximation is
always conservative, it does not provide any evi-
dence in the accuracy of the approximation. The
two cumulative probability distributions are actu-
ally equal by construction for NF(elrN

M(N)) =
Fi(LR) = 1. The distributions also must agree
for N − 1 defaults because the prob(R+

N−1) = 0;
that is, the single event that corresponds to N

defaults must be larger than the largest loss rate
generated by N − 1 defaults elrN−1

M(N−1).

Moving back from q = 1, in the direction of
q = 0, for N − 2 defaults, the term prob(R+

N−2)
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can be larger than 0. For example, consider a port-
folio of 10 credits each with EAD = 100. If the
loss given default on these credits are the integer
values from 1 to 10, and {plri} represents the vec-
tor of individual credit portfolio loss rates ranked
in ascending order, the sum of the largest eight
credit portfolio loss rates

∑10
i=3 plri = .52 >∑9

i=1 plri = .45, and so prob(R+
N−2) > 0, and

F(elrN−2
M(N−2)) > Fi

(
N−2
N

LR
)
.

In the far right tail of the distribution, the proba-
bilities associated R+

N−2 are generally very small
for the probabilities of default in the ranges nor-
mally encountered in fixed income portfolios.
Defaults are distributed binomially and so most
of the probability mass for the default distribu-
tion is located within two standard deviations
[±2 × LGD√

N
× √

PD(1 − PD)] of the expected
value of the distribution [a portfolio loss rate of
LGD × PD]. Progressing back towards q = 0,
values for R+

N−j that are associated with loss rates
far above the mean portfolio loss rate will also
be very small and so the approximation will be
highly accurate in the upper tail region of the
distribution.

Notes
1 Legend has it thatAlbert Einstein once called compound

interest “the most powerful force in the universe” or “the
greatest invention in human history.” However, there is
no official record or transcript that supports this claim.

2 A granularity adjustment for obligor concentration risk
was first introduced by Vasicek and refined by Wilde
(2001), Martin and Wilde (2002), Gordy (2003), Gordy
and Lütkebohmert (2013), Gordy and Marrone (2012)
among others.

3 The so-called “granularity adjustment” for concentra-
tion risk was first proposed by Vasicek in 1991. The
Basel Committee on Banking Supervision (2001) pro-
posed a granularity adjustment based on estimates
from Monte Carlo simulations using commercial risk
measurement software [CreditRisk+]. Subsequently,
Wilde (2001), Martin and Wilde (2002), Gordy (2003),
Gordy and Lütkebohmert (2013), Gordy and Marrone

(2012) provided generalized statistical theory to support
the granularity adjustment in a number of model set-
tings.

4 For example, the Vasicek and CreditRisk+ portfolio
models have different probability structures that drive
defaults, so they have different granularity adjustment
factors. The volume edited by Gundlach and Lehrbass
(2004) includes a discussion of the CreditRisk+ model
and various generalizations.

5 Wilde (2001).
6 E(Ṽi) = 0, and σ2(Ṽi) = E(Ṽ 2

i ) − E(Ṽi)
2 = 1.

7 Alternatively, EAD can be measured as the initial loan
balance. Here LGD would exclude the loss of accrued
interest and Expression (7) is the loss rate of the initial
portfolio that owes to defaults.

8 The portfolio loss rate is given by
(LGD

N

)
ñ, where n is

the number of defaults in a portfolio of N credits. ñ is
distributed binomially with a mean, E(ñ) = N × PD

and variance of Var(ñ) = N × PD(1 − PD).
9 The default events will be independent after condi-

tioning on a specific value of the common factor. To
keep the discussion as simple as possible, I assume the
conditioning step has already been done.

10 The probability of experiencing one success in three
independent Bernoulli trials, where the probability
of a successes on each Bernoulli trial is 5 percent,(N

k

)
PDk(1 − PD)N−k = (5

1

)
.05(.95)2 where

(N
k

) =
N!

k!(N−k)!
11 The number of unique combinations of k obligor defaults

in a portfolio of N obligors is
(N

k

)
.

12 The credits’ individual portfolio loss rates equal
16/120 = 13.33 percent.

13 There is no conceptually difficultly incorporating credits
with identical portfolio default rates. However, it would
needlessly complicate the discussion.

14 The orange bars in Figure 2 represent the isomorphic
loss rate distribution that corresponds to the obligor
concentration portfolio loss rate distribution (blue
points).

15 By conservative, I mean, by way of example: if q =
0.95 and L̂Rq sets the required capitalization rate for the
portfolio, the true probability of default associated with
a capitalization rate of L̂Rq will always be 5 percent or
less.

16 The equity used to fund the portfolio is set equal to a
value-at-risk estimate for the portfolio return or loss rate
distribution. For addition discussion, see for example,
Kupiec (2004, 2007).

Second Quarter 2016 Journal Of Investment Management
Not for Distribution



70 Paul Kupiec

References

Altman, E. and A. Saunders (1998). “Credit Risk Measure-
ment: Developments over the last 20 years,” Journal of
Banking and Finance 21, 1721–1742.

Basel Committee on Banking Supervision (2001). “Basel
II: The New Basel Capital Accord, Second Consultative
Paper,” The Bank for International Settlements.

Gordy, M. (2003). “A Risk-Factor Model Foundation for
Ratings-Based Bank Capital Rules,” Journal of Financial
Intermediation 12(3), 199–232.

Gordy, M. and Marrone, J. (2012). “Granularity Adjust-
ment for Mark-to-Market Credit Risk Models,” Journal
of Banking and Finance 36, 1896–1910.

Gordy, M. and Lütkebohmert, E. (2013). “Granularity
Adjustment for Regulatory Capital Assessment,” Inter-
national Journal of Central Banking 9(3), 33–71.

Gundlach, V. M. and Lehrbass, F. B. (eds.) (2004).
CreditRisk+ in the Banking Industry. Heidelberg:
Springer-Verlag.

Hull, J. and White, A. (2004). “Valuation of a CDO and an
n-th to Default CDS Without Monte Carlo Simulation,”
Journal of Derivatives 12(2), 8–23.

Kupiec, P. (2004). “Estimating Economic Capital Alloca-
tion for Market and Credit Risks,” The Journal of Risk
6(4), 11–29.

Kupiec, P. (2007). “Capital Allocation for Portfolio Credit
Risk,” The Journal of Financial Services Research 32(1–
2), 103–122.

Kupiec, P. (2008). “A Generalized Single Common Fac-
tor Model of Portfolio Credit Risk,” The Journal of
Derivatives 15(3), 25–40.

Markowitz, H. (1952). “Portfolio Selection,” The Journal
of Finance 7(1), 77–91.

Martin, R. and Wilde, T. (2002). “Unsystematic Credit
Risk,” Risk 15(11), 123–128.

Sharpe, W. F. (1964). “Capital Asset Prices: A Theory
of Market Equilibrium Under Conditions of Risk,” The
Journal of Finance 19(3), 425–442.

Vasicek, O. (1987). Probability of Loss on Loan Portfolio.
KMV Corporation Working Paper.

Vasicek, O. A. (1991). “Limiting Loan Loss Probability
Distribution,” KMV Corporation Working Paper. Subse-
quently published as, Vasicek, O. (2002). “Loan Portfolio
Value,” Risk 15(12), 160–162.

Wilde, T. (2001). “Probing Granularity,” Risk 14(8), 103–
106.

Keywords: Portfolio diversification; idiosyncratic
default risk; obligor concentration; Vasicek single
common factor model of credit risk; credit value-
at-risk; Basel bank capital requirements

Journal Of Investment Management Second Quarter 2016
Not for Distribution




