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FACTOR MISALIGNMENT AND PORTFOLIO CONSTRUCTION
Jose Menchero

In recent years, there has been heightened interest among practitioners in the topic of factor
misalignment; this term refers to the practice of employing mean-variance optimization
to construct portfolios when the alpha signal is not contained within the set of risk model
factors. In this paper, we employ a realistic simulation framework to study the efficiency
of optimized portfolios under a variety of conditions. In particular, we study the case in
which the alpha factor contains true systematic risk, and the case in which it does not. We
also consider two risk models: one that contains the alpha factor, and the other that omits
it. We find some evidence to support a modest increase in portfolio information ratio when
the alpha factor is included in the risk model, provided two conditions hold: (1) the alpha
factor must include true systematic risk, and (2) the factor correlations must be estimated
with sufficient precision. If the alpha factor does not contain true factor risk, we find that
including the alpha signal in the risk model is detrimental to portfolio information ratio.
Finally, we conduct an empirical analysis of portfolio efficiency in the US stock market
and find that the results are in excellent agreement with our simulations.

1 Introduction

Mean–variance optimization is widely used as
a portfolio construction tool by quantitative
asset managers. The technique was pioneered
by Markowitz (1952) and provided for the first
time a formal structure for balancing the trade-
off between risk and return. The required inputs
to the Markowitz optimization problem include:
(a) the expected returns, or alphas, of every asset,
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(b) the asset covariance matrix, and (c) a set of
investment constraints.

The alphas are typically generated using a pro-
prietary set of alpha signals, or factors. The
primary purpose of an alpha factor is to out-
perform a benchmark. Hence, alpha factors are
selected based on their ability to explain the
mean, or the first moment, of the portfolio return
distribution.

By contrast, the asset covariance matrix is typ-
ically obtained using a multi-factor risk model,
often provided by a third-party vendor. The
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factors used in such models are selected based on
their ability to explain cross-sectional variation in
stock returns, with the primary aim being to pre-
dict portfolio volatility. That is, risk factors are
used to estimate the standard deviation, or second
moment, of the portfolio return distribution.

Given these divergent objectives, it is not surpris-
ing that differences will exist between the two
types of factors. In general, unless the alpha fac-
tor is explicitly included in the risk model, it is not
possible to represent alpha as a linear combina-
tion of risk model factors. When this occurs, we
say that there is misalignment between the alpha
factor and the risk factors.

In general, alpha signals can always be decom-
posed into two components by performing a
cross-sectional regression of stock alphas against
the risk model factors. The part of alpha that
is explained by the risk factors is known as the
spanned alpha. The second component is orthog-
onal to the risk factors and represents the residual
alpha.

The risk model views the residual alpha as
diversifiable idiosyncratic risk. By contrast, the
spanned alpha represents non-diversifiable factor
risk. Hence, on a risk-adjusted basis, the resid-
ual component appears far more attractive. This
causes the optimizer to tilt the portfolio holdings
in the direction of the residual alpha. If one makes
the rather heroic assumption that the alpha signal
and risk model are known without error, then such
tilting would always be desirable as it maximizes
the ex ante portfolio Information Ratio.

In reality, of course, neither the alpha signal
nor the risk model can be known with certainty.
Instead, these quantities must be estimated from
available data. This process inevitably leads to
errors in the factor exposures, the factor returns,
and the covariance matrix. Such errors may

have detrimental effects on portfolios constructed
using mean–variance optimization.

Lee and Stefek (2008) were among the first to
investigate the effects of factor misalignment
in portfolio construction. They considered the
example of a momentum alpha signal constructed
using trailing 12-month returns with a 1-month
lag, with a momentum risk factor constructed
using trailing 12-month returns with no lag. In this
example, stocks that performed well 13 months
ago contribute positively to alpha, but have no
associated factor risk. Hence, these stocks appear
particularly attractive. By contrast, stocks that
performed well last month contain factor risk,
but have no associated alpha. Indeed, Lee and
Stefek showed that the optimized portfolio tends
to heavily overweight stocks that performed well
13 months ago, while underweighting those that
performed well over the previous month. These
would likely represent unintentional bets by the
portfolio manager, and may be detrimental to
performance.

Ceria et al. (2012) highlighted other problems that
may arise from factor misalignment. One such
problem is the underestimation of risk of opti-
mized portfolios. This occurs when the residual
alpha contains factor risk that was omitted from
the risk model. In this case, the optimizer will
align the portfolio in the direction of the miss-
ing factor, thus leading to an underestimation of
risk. Ceria et al. also discussed the reduction
in Information Ratio that can result from sub-
optimal allocation of the risk budget due to factor
misalignment.

In this paper, we investigate the impact on portfo-
lio Information Ratio of including alpha factors in
risk models. We consider two types of risk mod-
els, denoted Model A and Model B. These two
models are identical in every respect except that
Model A includes the alpha factor, whereas it is
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omitted from Model B. We also consider two dis-
tinct cases, denoted Case 1 and Case 2. In the first
case, the residual alpha contains true factor risk,
whereas it is purely idiosyncratic in the second
case.

By considering Case 1 and Case 2 jointly with
Model A and Model B, we naturally segment the
world into four distinct possibilities. When the
residual alpha contains true factor risk (Case 1),
Model A will be properly specified since it has
included a valid risk factor, whereas Model B will
be misspecified for failing to include the factor.
By contrast, when the residual alpha contains no
factor risk (Case 2), Model A will be misspeci-
fied for including a spurious risk factor, whereas
Model B will be properly specified for correctly
omitting the factor.

Our objective is to compare the efficiency of
optimized portfolios constructed using Model A
and Model B. To conduct our analysis, we begin
with a simulation framework designed to real-
istically mimic the behavior of the US equity
market. Within our simulations, we know the
true return-generating process. This enables us
to determine the true risk and return character-
istics of the portfolios we study. The simulation
framework also enables us to study the effects of
sampling error in a controlled setting. Next, we
show that our simulated results are in excellent
agreement with out-of-sample empirical results
for the US equity market. We conclude with a
discussion on the sources of factor misalignment
and compare various potential treatments.

2 Alpha factors and risk factors

Mathematically, factors are represented as N ×
1 column vectors, where N is the number of
stocks. If we consider K such factors, the fac-
tor exposure matrix has dimensionality N × K.
We estimate factor returns by multivariate cross-
sectional regression of stock returns against the

factor exposures. As discussed by Menchero
(2010), factor returns are properly interpreted as
the returns of pure factor portfolios that have
unit exposure to the factor in question, and zero
exposure to the other factors in the regression.

Of course, not every N × 1 column vector rep-
resents an interesting factor from an investment
viewpoint. The factors that are of financial inter-
est can be categorized into alpha factors and risk
factors. Before proceeding with our analysis, it is
essential to first define these terms precisely.

In this paper, we define an alpha factor to be one
that is effective at explaining the first moment of
stock returns. More specifically, if a pure factor
portfolio has non-zero expected return, it repre-
sents an alpha factor. In other words, alpha factors
capture sources of directional drift. A “good”
alpha factor is one that has a high Information
Ratio, meaning that the expected return of the
pure factor portfolio is large relative to its volatil-
ity. An equivalent way of stating this is that the
pure alpha factor portfolios will have significant
t-statistics in their return time series.

We define a risk factor to be one that is effective at
explaining the second moment of the return distri-
bution. That is, risk factors identify the sources of
cross-sectional variation in stock returns. Stocks
with positive exposure to a given factor will earn a
return contribution opposite in sign to those with
negative exposure. Since the pure factor portfolio
takes net-long positions in stocks with positive
exposure and net-short positions in stocks with
negative factor exposure, a “good” risk factor
will have high volatility. This implies that the
factor returns tend to be large relative to the sam-
pling error in the return estimate. In other words,
a good risk factor will have a high percentage
of significant t-statistics in the cross-sectional
regressions.
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It is important to recognize that alpha factors and
risk factors are not mutually exclusive categories.
For instance, some factors may simultaneously
represent both alpha factors and risk factors.
Momentum is a good example of such a factor,
as it tends to exhibit both positive drift and high
volatility.

Most risk factors, however, cannot rightly be con-
sidered as alpha factors. For example, industries
and countries are often excellent risk factors, as
they capture important sources of equity return
co-movement. Nonetheless, most investors do
not view them as persistent sources of alpha.
Similarly, the beta factor portfolio is extremely
volatile, thus making it an excellent risk factor.
By contrast, it tends not to exhibit persistent drift,
thus making it a poor alpha factor.

In principle, there may exist alpha factors that
are not sources of systematic risk, although such
factors may be exceedingly difficult to find in
practice. Nonetheless, consider a signal derived
from the unique insights of a portfolio manager.
Such a factor is unlikely to be a risk factor, since
no other investors would be actively trading the
signal. On the other hand, if the portfolio man-
ager’s insights are valid, it may represent a good
alpha factor.

Finally, according to our definitions, it is trivial to
construct a “factor” that is neither alpha factor nor
risk factor. Such a factor could be produced, for
instance, by simply drawing the factor exposures
at random from a standard normal distribution.

3 Simulated factor portfolios

A simulation exercise is helpful for illustrating
the behavior of the different factor types. The
Cholesky decomposition, as described for exam-
ple by Greene (2000), is a common statistical
technique used to simulate returns that are drawn
from a given multivariate normal distribution. In

our simulation, we suppose that the “true” return-
generating process for the US stock market is
governed by the multivariate normal distribution
from the Barra USE4 asset covariance matrix.1

We then use the Cholesky decomposition to sim-
ulate 240 periods of stock returns (representing 20
years of monthly observations) for all constituents
of the MSCI USA IMI index.

The first step in our simulation exercise is to con-
struct a pure factor portfolio for a given USE4
style factor. This is accomplished in the usual
way by performing a multivariate cross-sectional
regression of stock returns against the factor expo-
sures. To compute the actual return of the pure
factor portfolio, we must provide the simulated
stock returns as inputs.

To illustrate the various factor types, we gener-
ate three distinct sets of simulated stock returns.
The first set of simulations is designed to illus-
trate the behavior of a risk factor that is not an
alpha factor. These stock returns were generated
using the Cholesky decomposition with the factor
returns and specific returns drawn from mean-
zero distributions. The second set of simulations
illustrates the behavior of a factor that is both an
alpha factor and a risk factor. In this case, the stock
returns were generated using the same Cholesky
decomposition but with the mean of the factor
return distribution shifted slightly to produce a
true Information Ratio of 1. The final set of sim-
ulations illustrates the comportment of an alpha
factor that is not a risk factor. To generate these
stock returns, we set the volatility of the fac-
tor under consideration to zero, while inducing
a drift by making the mean specific returns pro-
portional to the factor exposures. The constant of
proportionality was calibrated to make the true
Information Ratio equal to 1.

In Figure 1, we plot the cumulative performance
of the pure factor portfolio using the three sets
of simulated stock returns. The dashed red line
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Figure 1 Simulated cumulative returns for different
factor types.

represents the cumulative return of a pure factor
portfolio corresponding to a risk factor that is not
an alpha factor. We see that the factor portfolio
tends to drift sideways, consistent with having
zero expected returns. Even so, such a factor
portfolio may, by chance, exhibit several years
of positive or negative performance. The true
ex ante volatility of this factor portfolio is
2.86 percent. Most of the volatility of the fac-
tor portfolio is due to the underlying factor,
although there is also a small contribution from
the stock-specific component.

The solid blue line in Figure 1 represents the
cumulative return of a factor that is both an alpha
factor and a risk factor. Over a long time, we
in fact observe a persistent drift. Even so, we
see that there were also extended periods with
mediocre performance. That is, even skillful man-
agers may sometimes underperform for periods
spanning several years. The ex ante volatility of
the factor portfolio is again 2.86 percent.

The dashed green line in Figure 1 represents the
cumulative performance of an alpha factor that
is not a risk factor. We see that the factor port-
folio indeed exhibits positive drift over the long
term. Note also that the volatility of the factor
portfolio is much lower than in the other two
cases. Even though the true factor return was zero

every period, the estimated factor returns were
always non-zero due to sampling error. The true
ex ante volatility of this portfolio is 76 bps and is
completely due to idiosyncratic effects.

In the next section, we describe the analytic
framework that we employ in our study. Our
framework is used to compare the efficiency of
portfolios constructed using different risk models.

4 Analytic framework

We begin by supposing that the true alpha signal
and the true asset covariance matrix are known
in advance by the investor. As described by Gri-
nold and Kahn (2000), it is a simple exercise
to construct the holdings vector hT of the true
unconstrained optimal portfolio

hT = V−1
T α

α′V−1
T α

, (1)

whereVT is theN×N true asset covariance matrix
and α is the N × 1 vector of true stock alphas.
Portfolio hT has the lowest risk of any portfolio
with unit exposure to the alpha factor, and hence
the highest Information Ratio.

In the real world, of course, investors do not have
the luxury of knowing either the true alpha sig-
nal or the true covariance matrix. The purpose of
this paper is to compare the efficiency of opti-
mized portfolios constructed using two different
risk models: Model A which includes the alpha
factor, and Model B which excludes it. Each
model is estimated on two sets of simulated stock
returns. In Case 1, the alpha factor contains true
systematic risk; in Case 2 the alpha factor contains
no systematic risk. While the two optimizations
use different risk models, they utilize the same
alpha signal. We take as our alpha signals the 12
style factors of the Barra USE4 risk model.

As before, we use the Cholesky decomposition
to generate L periods of simulated stock returns
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consistent with the true covariance matrix. For
simulation purposes, we assume that the true
covariance matrix is given by a multivariate nor-
mal distribution based on one of the two variants
of the Barra USE4 risk model. The first vari-
ant, corresponding to Case 1, is the actual USE4
model without modification. The second vari-
ant, corresponding to Case 2, is derived from the
USE4 model by simply deleting the alpha factor
under consideration.

We then use the simulated stock returns to esti-
mate two risk models. Model A is estimated using
a factor exposure matrix XA taken directly from
the USE4 model. Model B is estimated using a
factor exposure matrix XB derived from USE4
by deletion of the alpha factor.

Let r
(1)
nt be the simulated return for stock n and

period t under Case 1,

r
(1)
nt =

∑

k

XA
nkf

A
kt + uA

nt, (2)

where XA
nk is the exposure of stock n to factor

k taken from matrix XA, fA
kt is the true return

for factor k during period t, and uA
nt is the true

specific return for the stock. The estimated factor
returns f̂

A(1)
kt and estimated specific returns û

A(1)
nt

under Model A are obtained by cross-sectional
regression,

r
(1)
nt =

∑

k

XA
nkf̂

A(1)
kt + û

A(1)
nt . (3)

The estimated factor covariance matrix elements
F̂

A(1)
ij for Model A are directly computed as

F̂
A(1)
ij = 1

L − 1

L∑

t=1

(f̂
A(1)
it − f̄

A(1)
i )

× (f̂
A(1)
jt − f̄

A(1)
j ), (4)

where f̄
A(1)
i is the time-series mean of the esti-

mated returns for factor i and L is the number of

periods used to estimate the model. Finally, the
specific variance forecasts are given by

�̂A(1)
n = 1

L − 1

L∑

t=1

(û
A(1)
nt − ūA(1)

n )2, (5)

where ū
A(1)
n is the time-series mean of the esti-

mated specific return for stock n. The estimated
asset covariance matrix for Model A and Case 1
is therefore given by

V̂
(1)
A = XAF̂

(1)
A X′

A + �̂
(1)
A , (6)

where F̂
(1)
A is the K × K estimated factor covari-

ance matrix whose elements are given by Equa-
tion (4), and �̂

(1)
A is the diagonal matrix of

estimated specific variances whose elements are
given by Equation (5).

After estimating Model A, we repeat the exercise
for Model B, still using the same set of simulated
returns from Case 1. This leads to a new asset
covariance matrix, denoted V̂

(1)
B . Next, we use

the estimated risk models V̂
(1)
A and V̂

(1)
B to con-

struct two optimal portfolios. The holdings of the
portfolio constructed using Model A are given by

h
(1)
A = (V̂

(1)
A )−1α

α′(V̂ (1)
A )−1α

, (7)

with a corresponding expression for portfolio
h

(1)
B , constructed using Model B.

Finally, we repeat this entire exercise using the
simulated returns for Case 2. The returns in this
case are given by

r
(2)
nt =

∑

k

XB
nkf

B
kt + uB

nt. (8)

That is, we simulate stock returns by remov-
ing the systematic risk associated with the alpha
factor. We use the simulated stock returns to esti-
mate asset covariance matrices denoted V̂

(2)
A and

V̂
(2)
B . Finally, we use these covariance matrices

to construct optimized portfolios, denoted h
(2)
A

and h
(2)
B .
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The objective of this paper is to compare the effi-
ciency of optimized portfolios constructed using
different risk models. To study this question, we
must first review the concept of the Transfer
Coefficient.

5 The transfer coefficient

For clarity, the previous section used super-
scripts (1) and (2) to denote Case 1 and Case 2,
respectively. In this section, for simplicity, we
suppress such notation. The reader should be
aware, however, that we consider both cases in
our analysis.

To study the efficiency of portfolios hA and hB,
we use the Transfer Coefficient. Let hT be the true
optimal portfolio, with holdings given by Equa-
tion (1). The true Information Ratio of portfolio
hT is given by

IRT = E[RT ]
σT

, (9)

where E[RT ] is the true expected return of port-
folio hT and σT is the true volatility. The expected
returns are easily obtained using the true alphas,
and the volatility is computed using true asset
covariance matrix VT .

In a similar fashion, the true Information Ratio
for portfolio hA is given by

IRA = E[RA]
σA

, (10)

where E[RA] is the true expected return of port-
folio hA and σA is the true volatility (measured
using VT ). A central result of Modern Portfolio
Theory is that the expected return of any portfo-
lio is given by the true beta of the portfolio with
respect to the true optimal portfolio hT , multi-
plied by the expected return of portfolio hT . In

other words,

E[RA] = βAE[RT ]. (11)

Substituting this into Equation (10), we obtain

IRA = βAE[RT ]
σA

. (12)

Now, using Equation (9) and the standard relation
βA = ρAσA/σT , we obtain

IRA = ρAIRT , (13)

where ρA is the true correlation (i.e., computed
using VT ) between portfolio hA and portfolio hT .
Equation (13) states that the Information Ratio of
portfolio hA is equal to the Information Ratio of
the true optimal portfolio hT , multiplied by the
predicted correlation between the two portfolios.
This special correlation (i.e., with the true optimal
portfolio) is given the name Transfer Coefficient,

TCA = h′
AVT hT√

h′
AVT hA

√
h′

T VT hT

. (14)

A similar expression TCB holds for portfolio hB.
The Transfer Coefficient quantifies the drop in
Information Ratio due to holding the actual port-
folio instead of the true unconstrained optimal
portfolio. In other words, the Transfer Coefficient
provides a direct measure of portfolio efficiency.

6 Simulated results

Every month we generated 200 periods of sim-
ulated stock returns with the Barra USE4 model
using the two distinct return-generating processes
given by Equations (2) and (8), respectively. We
then used the simulated stock returns to estimate
Model A and Model B. We computed the Trans-
fer Coefficient for each of the 12 Barra USE4
style factors every month and averaged them over
a 15-year period from December 1998 through
December 2013. Finally, we repeated the simu-
lation 10,000 times and averaged across the trial
runs.
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Table 1 Simulated mean Transfer Coef-
ficient (averaged across time) for Barra
USE4 optimized factor portfolios. Results
are presented for Case 1, in which the alpha
factor contains true systematic risk. Sample
period is from Dec-1998 to Dec-2013.

Sample Average

Alpha Factor TC(A) TC(B)

Growth 0.85 0.88
Size 0.86 0.81
Non-linear Size 0.87 0.84
Dividend Yield 0.86 0.87
Book-to-Price 0.85 0.87
Earnings Yield 0.86 0.85
Beta 0.84 0.53
Residual Volatility 0.85 0.71
Non-linear Beta 0.86 0.85
Momentum 0.87 0.86
Leverage 0.86 0.84
Liquidity 0.84 0.80

Average (ex Beta) 0.86 0.83

In Table 1, we present mean Transfer Coefficients
(averaged across time) for Case 1, in which the
alpha signal contains true factor risk. By and
large, we see that the Transfer Coefficients for
the two models were quite similar. For a few fac-
tors (growth, dividend yield, and book-to-price),
Model B actually produced marginally higher
Transfer Coefficients, even though the model was
misspecified. For most factors, however, Model A
produced slightly more efficient portfolios. The
major exception was the beta factor, which saw
a major increase in Transfer Coefficient when it
was included in the risk model.

It is worth considering the beta factor in more
detail. The beta factor is unique among style fac-
tors in that it forms a near-perfect hedge with
another risk factor. More specifically, the return
correlation in USE4 between the beta factor and

the country factor tends to be extremely high, typ-
ically around 0.90. To understand the origin of
this correlation we must consider the pure fac-
tor portfolios. As discussed by Menchero (2010),
the country factor portfolio essentially represents
the cap-weighted US market portfolio. The beta
factor portfolio, by contrast, is a dollar-neutral
portfolio that is long high-beta stocks and short
low-beta stocks. Over the short run, when the
return of the market portfolio is positive, there
is a strong tendency for high-beta stocks to out-
perform low-beta stocks. This explains the high
correlation between the two factors. Hence, a
short position in the country factor will act as a
near-perfect hedge for the beta factor. However,
if the beta factor is omitted from the model, then
it is impossible to exploit this hedge. This leads
to the large drop in Transfer Coefficient seen for
Model B in Table 1.

In Figure 2, we plot the mean Transfer Coefficient
(averaged across factors) versus time for Case 1.
The average Transfer Coefficient for ModelAwas
quite stable. For Model B, by contrast, we find
considerably more time variation. In particular, it
appears that there was greater benefit to includ-
ing the alpha factor during the Internet Bubble and
the Global Financial Crisis. This is likely because
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Figure 2 Simulated mean Transfer Coefficient (aver-
aged across factors) and plotted versus time for Case 1,
in which the alpha factor contains true systematic risk.
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Table 2 Simulated mean Transfer Coeffi-
cient (averaged across time) for Barra USE4
optimized factor portfolios. Results are pre-
sented for Case 2, in which the alpha factor
contains no systematic risk. Sample period is
from Dec-1998 to Dec-2013.

Sample Average

Alpha Factor TC(A) TC(B)

Growth 0.79 0.99
Size 0.78 0.98
Non-linear Size 0.79 0.98
Dividend Yield 0.78 0.98
Book-to-Price 0.79 0.98
Earnings Yield 0.80 0.98
Beta 0.78 0.97
Residual Volatility 0.77 0.98
Non-linear Beta 0.81 0.99
Momentum 0.80 0.98
Leverage 0.79 0.98
Liquidity 0.78 0.98

Average (all factors) 0.79 0.98

the USE4 factor correlations were higher dur-
ing these crisis periods, making the factor hedges
more effective.2

In Table 2, we report the mean Transfer Coef-
ficient (averaged across time) for Case 2, in
which the alpha factor contains no systematic
risk. The returns of the pure alpha factor port-
folio are now 100 percent idiosyncratic in nature.
In other words, the estimated alpha factor returns
in Model A are pure noise. We now find an
average Transfer Coefficient of 0.79 by improp-
erly including the factor (Model A) versus an
average Transfer Coefficient of 0.98 by prop-
erly excluding the alpha factor from the risk
model (Model B). In this case, including a spuri-
ous factor in the risk model significantly reduces
portfolio efficiency. This is a consequence of
the fact that the in-sample correlations between

Case 2 (Spurious Alpha)

Year

1999 2002 2005 2008 2011 2014 

Tr
an

sf
er

Co
effi

ci
en

t

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Model A (alpha included)
Model B (alpha omiƩed)

Figure 3 Simulated mean Transfer Coefficient (aver-
aged across factors) and plotted versus time for Case 2,
in which the alpha factor contains no systematic risk.

the alpha factor and the other risk factors are
always non-zero. The optimizer interprets these
in-sample correlations as hedging opportunities,
thereby producing non-zero exposures to risk fac-
tors. However, since the true correlations are zero,
the exposures to the risk factors add risk to the
portfolio, rather than reducing it.

In Figure 3, we plot the mean Transfer Coefficient
(averaged across factors) versus time for Case 2.
The mean Transfer Coefficient for Model B was
consistently high and quite stable. For Model B,
the optimizer focuses on diversifying specific risk
since the alpha factor does not contain any sys-
tematic risk that needs to be hedged. The high
Transfer Coefficient for Model B implies that 200
periods of observations are sufficient to effec-
tively diversify specific risk. For Model A, by
contrast, the mean Transfer Coefficient is con-
sistently lower due to the spurious factor hedges
described above.

7 The role of sampling error

The results of the previous section were based
on using 200 periods to estimate the risk models.
Since our simulation environment is stationary,
we always expect to find improvement by using
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more observations. The amount of sampling
error in the factor covariance matrix, of course,
depends on the number of observations in the
sample. To study the role of sampling error, we
repeat the same exercise as before except we now
vary the estimation window length from 100 peri-
ods to 800 periods. For each length of estimation
window, we again perform 10,000 simulations.
Due to the computational expense of the simula-
tions, however, we consider only a single analysis
date of December 31, 2013.

We first consider Case 1, in which the alpha factor
contains true systematic risk. In Figure 4, we plot
the mean Transfer Coefficient for Model A and
Model B (averaged across factors) versus length
of estimation window. For Model B, the Trans-
fer Coefficient does not materially depend on the
length of the estimation window. This is because
the residual alpha component receives most of
the risk budget, hence factor correlations play lit-
tle role in determining the Transfer Coefficient.
By contrast, for Model A, we see a large increase
in average Transfer Coefficient when we expand
the length of the estimation window. This is due
to more reliable factor hedges as the correlations
are estimated with greater precision.
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Figure 4 Simulated mean Transfer Coefficient (aver-
aged across factors) versus length of estimation win-
dow for Case 1. The analysis date is December 31,
2013.

Case 2 (Spurious Alpha)
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Figure 5 Simulated mean Transfer Coefficient (aver-
aged across factors) versus length of estimation win-
dow for Case 2. The analysis date is December 31,
2013.

In Figure 5, we plot the mean Transfer Coefficient
versus length of estimation window for Case 2,
in which the alpha factor contains no systematic
risk. The average Transfer Coefficient of Model B
is close to 1 and dominates Model A for any
length of estimation window. However, the Trans-
fer Coefficient of Model A increases dramatically
as we expand the length of the estimation window.
This is because with more observations, Model A
is able to estimate correlations with sufficient
precision to avoid placing spurious hedges.

8 The long-only constraint

Up to now, we have only considered uncon-
strained optimal portfolios, which are determined
analytically using Equation (1). In practice, port-
folio managers often impose several investment
constraints, such as the long-only constraint, the
full-investment constraint, monthly turnover con-
straints, or constraints on the number of stocks
held in the portfolio. In this paper, we focus on the
long-only constraint. If the true risk model is used
in the portfolio construction process, any con-
straint will lower the ex ante Information Ratio by
reducing the ability of the optimizer to diversify
specific risk or find effective factor hedges.
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Figure 6 Simulated mean Transfer Coefficient (aver-
aged across factors) versus length of estimation win-
dow for Case 1, with long-only constraint. The
analysis date is December 31, 2013.

In Figure 6, we plot the mean Transfer Coefficient
versus length of estimation window for Case 1
under the long-only constraint. Again we perform
10,000 simulations for analysis date of Decem-
ber 31, 2013. Compared with Figure 4, we see
that the long-only constraint has the effect of low-
ering the Transfer Coefficient, as expected. The
results in Figures 4 and 6 are also qualitatively
similar in that Model A outperforms for large
window length, whereas Model B outperforms
for short window lengths. What is striking, how-
ever, is the tight compression observed in Figure 6
for the difference in Transfer Coefficient between
Model A and Model B. That is, whereas the dif-
ferences in Transfer Coefficient between ModelA
and Model B are quite significant in Figure 4, the
differences are much smaller when the long-only
constraint is imposed. For example, even with
800 observations in Figure 6, Model A has only a
slightly higher Transfer Coefficient than Model B
(0.72 versus 0.69). In other words, even when the
alpha factor is a valid risk factor, we obtain only
a 4 percent improvement in Information Ratio
under the long-only constraint by including alpha
in the risk model.

In Figure 7, we plot the mean Transfer Coef-
ficient versus length of estimation window for

Case 2 (Spurious Alpha)
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Figure 7 Simulated mean Transfer Coefficient (aver-
aged across factors) versus length of estimation win-
dow for Case 2, with long-only constraint. The
analysis date is December 31, 2013.

Case 2 under the long-only constraint. Again,
we performed 10,000 simulations for analysis
date of December 31, 2013. Three points are
worth highlighting. First, the long-only con-
straint dramatically lowers portfolio efficiency
for Case 2. For instance, the Transfer Coeffi-
cient for Model B at 800 observations drops from
0.99 in Figure 5 to 0.45 in Figure 7. Second, we
again find that the curves under the long-only con-
straint (Figure 7) are qualitatively similar to the
unconstrained result (Figure 5), with Model B
dominating across the entire spectrum. Lastly, we
see that the differences in Transfer Coefficients
have again narrowed considerably. For example,
using 100 periods, Model B has a Transfer Coeffi-
cient of 0.94 in Figure 5 versus 0.66 for Model A.
In Figure 7, by contrast, we see that this sizeable
difference is now cut to 0.42 for Model B versus
0.40 for Model A. That is, we find only a mod-
est gain in Information Ratio under the long-only
constraint when the alpha factor has been properly
omitted from the model.

9 Empirical analysis

Simulation exercises are extremely useful for
investigating model behavior as they allow the
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researcher to “peek behind the curtain” in a
controlled environment and observe the true char-
acteristics of the portfolios. Effects related to
sampling error, therefore, can be studied by
varying the length of the estimation window.
Furthermore, since simulations can be repeated
thousands of times, we are able to obtain high
statistical confidence in the results.

Of course, simulations are subject to their own
limitations. No matter how realistic they may be,
simulations must always make idealized assump-
tions that do not quite reflect reality. For instance,
in our simulations, we assumed a stationary
return-generating process. Real financial markets,
however, are not stationary. The skeptical reader
may thus question the validity of our simulated
results.

To investigate this question, we conducted the
following experiment using the Barra USE4 risk
model. We treat each USE4 style factor as an alpha
factor, one at a time. Since the USE4 factors were
specifically selected due to their strength as risk
factors, we regard them all as having true sys-
tematic risk. We then consider two risk models.
The first is the actual USE4 risk model, denoted
Model A since it includes the alpha factor. The
second model is a modified version of the USE4
model, which is obtained by simply setting the
volatility of the alpha factor under consideration
to zero.3 This is denoted Model B since the alpha
factor has been effectively omitted from the risk
model.

We then form the unconstrained optimal port-
folios, denoted hA and hB, using Model A and
Model B, respectively. The investment universe
is limited to the MSCI USAIMI index. Since port-
folios hA and hB, by construction, have the same
unit exposure to alpha, the portfolio with lower
volatility will have the higher Information Ratio.
In fact, it is simple to show that the ratio of out-
of-sample volatilities is inversely proportional to

Table 3 Empirical out-of-sample volatility ratio for
USE4 unconstrained optimized factor portfolios.
The sample period is from Dec-1998 to Dec-2013.

Realized Risk (%)
Volatility

Alpha Factor Model A Model B Ratio

Growth 1.56 1.74 1.11
Size 2.57 2.82 1.10
Non-linear Size 2.76 2.59 0.94
Dividend Yield 1.76 1.79 1.02
Book-to-Price 1.82 1.90 1.04
Earnings Yield 2.79 3.05 1.09
Beta 3.09 5.90 1.91
Residual Volatility 2.66 3.44 1.30
Non-linear Beta 1.36 1.71 1.26
Momentum 6.26 6.43 1.03
Leverage 1.64 2.16 1.32
Liquidity 1.76 1.96 1.11

Average (ex Beta) 2.45 2.69 1.11

the ratio of corresponding Transfer Coefficients,

TCA

TCB

= σB

σA

. (15)

In Table 3, we report the out-of-sample volatilities
σA and σB of the unconstrained optimal portfo-
lios for each style factor in the USE4 model. The
sample period is from December 1998 through
December 2013. Empirically, the beta factor was
again an outlier due to the near-perfect hedge
with the USE4 country factor. The out-of-sample
volatility of beta using Model B was 5.9 per-
cent, versus 3.1 percent for Model A. All factors
except non-linear size had higher volatility—
hence, lower efficiency—when the factor was
omitted from the model. The average volatility
ratio across all factors, excluding beta, was 1.11.

In order to make a quantitative comparison
with the simulated results, we must first esti-
mate the effective number of observations in the
USE4 model. The USE4 model uses daily fac-
tor returns, with factor correlations estimated
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using exponentially weighted averages with a
two-year half-life (504 trading days). The USE4
model also uses the methodology of Newey and
West (1987) with two lags for treating serial
correlation in the factor returns. Without lags,
the effective number of observations would be
approximately three times the half-life parameter,
or roughly 1500. However, the Newey–West pro-
cedure, while reducing biases in the correlation
forecasts, also increases the amount of sampling
error. To a first approximation, the Newey–West
procedure with two lags is equivalent to aggregat-
ing returns over a three-day horizon. This reduces
the effective number of observations by a factor
of 3. Hence, the effective number of observations
in USE4 is approximately 500.

Given that our simulations suggest we always
benefit by increasing the estimation window
length, it is natural to ask why the USE4 model
does not simply use the longest possible estima-
tion window. The answer lies in the fact that real
financial markets are non-stationary, in contrast
to the simulations. To minimize sampling error,
a long estimation window is desirable. However,
long windows include much stale data that have
little to do with current market conditions. To
capture the most relevant data, using a short esti-
mation window is desirable. The ideal window
length is found by optimally balancing these two
effects.

From Figure 4, with a window length of 500
periods, we find the Transfer Coefficient using
Model A is 0.94 versus 0.87 for Model B. Using
Equation (15), therefore, the simulations suggest
a volatility ratio of 1.08. This is in excellent agree-
ment with the observed volatility ratio of 1.11
shown in Table 3.

Next, we repeat the entire exercise under the
long-only constraint. In Table 4, we present the
out-of-sample volatilities for each factor. The
mean volatility ratio, averaged across factors, was

Table 4 Empirical out-of-sample volatility ratio for
USE4 optimized factor portfolios, with long-only
constraint. The sample period is from Dec-1998 to
Dec-2013.

Realized Risk (%)
Volatility

Alpha Factor Model A Model B Ratio

Growth 2.94 3.21 1.09
Size 5.15 5.15 1.00
Non-linear Size 8.98 8.93 0.99
Dividend Yield 2.65 2.75 1.04
Book-to-Price 3.06 3.09 1.01
Earnings Yield 4.69 4.64 0.99
Beta 6.42 6.78 1.06
Residual Volatility 4.49 5.16 1.15
Non-linear Beta 3.42 3.54 1.04
Momentum 6.73 6.79 1.01
Leverage 2.24 2.38 1.06
Liquidity 4.57 4.79 1.05

Average 4.45 4.58 1.04
(all factors)

1.04. Now, comparing with the simulated results
in Figure 6, we see that Model A has a Transfer
Coefficient of 0.72 versus 0.69 for Model B at 500
periods. Hence, the simulations predict a volatil-
ity ratio of 1.04, in essentially perfect agreement
with empirical observations.

A final point worth highlighting is that the volatil-
ity ratio for the beta factor was 1.06 under the
long-only constraint (Table 4) versus 1.91 in the
unconstrained case (Table 3). The reason for this
major reduction in volatility ratio is that the long-
only constraint forces the active exposure to the
country factor to be zero. As a result, the beta fac-
tor is no longer able to exploit the hedge that the
country factor provides.

10 Sources of factor misalignment

The degree of factor misalignment is related to the
relative magnitudes of the spanned and residual
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components of alpha. When the residual com-
ponent dominates, the alpha factor is weakly
collinear with the risk factors. Conversely, when
the spanned component dominates, the alpha fac-
tor is strongly collinear with one or more risk
factors.

Weak collinearity typically occurs when the alpha
signal represents an attribute that is fundamen-
tally distinct from any of the risk model factors.
In our study, we considered the alpha signals to
be the style factors from the Barra USE4 model.
Since each Barra risk factor is designed to cap-
ture a distinct fundamental attribute, these factors
tend to be weakly collinear.

Strong collinearity typically occurs when the
alpha signal represents essentially the same
attribute as one of the risk model factors. Momen-
tum is a leading example of such a factor.
Investors who follow a momentum strategy will
typically use a proprietary definition of momen-
tum as the alpha signal. These proprietary signals
are likely to be very similar, but not identical, to
the Barra USE4 momentum factor.

Based on the foregoing discussion, the reader will
recognize that our paper was limited to the case
of weak collinearity. It is possible that factor mis-
alignment effects are more pronounced in the case
of strong collinearity. One reason for this is that
as the degree of collinearity increases, the resid-
ual alpha component becomes less stable, leading
to possible increases in portfolio turnover. Fur-
ther research is required to better understand these
effects.

11 Treatments for factor misalignment

We now briefly discuss several techniques
employed by some practitioners for treating factor
misalignment in the case of strong collinear-
ity. The first treatment is to simply delete the

collinear factor from the risk model. For exam-
ple, in the case of a momentum strategy, the
Barra momentum factor would be zeroed out from
both the factor exposure matrix and the factor
covariance matrix. This essentially transforms the
problem into one of weak collinearity. Although
this technique is easy to apply, it suffers from
two significant drawbacks. First, since the result-
ing portfolio is closely aligned with the missing
factor, the risk model may significantly underpre-
dict portfolio volatility. Second, with the factor
deleted from the model, there is no mechanism
for the optimizer to enhance portfolio efficiency
by exploiting correlations with other risk factors.
This results in a sub-optimal allocation of the risk
budget.

Yet another approach for treating factor misalign-
ment is to build a custom risk model that con-
tains the alpha factor. This ensures consistency
between the factor covariance matrix and the fac-
tor exposure matrix. Nevertheless, more research
is necessary to understand the full implications of
this approach.

12 Summary

We have investigated the effects of factor mis-
alignment on portfolio construction. We consid-
ered the effect of using two distinct risk models,
one including the alpha factor, the other excluding
it. We also considered two distinct cases. In the
first case, the residual alpha component contained
true systematic risk, whereas it had no factor risk
in the second case. We found that even when the
residual alpha contained true factor risk, it did not
necessarily imply that including the alpha factor
in the risk model would increase the Informa-
tion Ratio. This occurs when the correlations are
estimated with low precision due to insufficient
observations. However, as the length of the esti-
mation window increases, we found a benefit to
including the alpha factor in the risk model. When
the residual alpha did not contain true factor risk,
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we found a consistent reduction in the Information
Ratio by improperly including the alpha factor in
the risk model.

We also examined the impact of the long-only
constraint. As expected, we found that this con-
straint reduced portfolio efficiency. More inter-
esting was the finding that the differences in
portfolio efficiency narrowed considerably with
the introduction of the long-only constraint. More
specifically, the Transfer Coefficients were nearly
identical regardless of which risk model was used
to construct the portfolios.

In addition, we conducted empirical back-tests
in the US market to study the gain in Informa-
tion Ratio that could be achieved by including
alpha factors in the risk model. Using the Barra
USE4 risk model, we found an average increase in
Information Ratio of approximately 11 percent if
no constraints were imposed. With the long-only
constraint, however, the gain in Information Ratio
dropped to 4 percent. Both empirical findings
were in excellent agreement with the simulated
results.

Finally, we discussed sources of factor misalign-
ment. Depending on whether or not the alpha sig-
nal represents an attribute already captured by one
of the risk factors, the factor misalignment can be
classified as either weakly collinear or strongly
collinear. We concluded with a brief discussion
of several techniques employed by practitioners
to treat the case of strong collinearity.

Notes
1 The Barra USE4 model comes in two versions: short

horizon and long horizon. Throughout this paper, we use

the short-horizon version, which is calibrated for a 1-
month prediction horizon.

2 These higher correlations may partially be an artifact of
sampling error. Since sampling error tends to be higher
during volatile periods, it is more likely to result in large
in-sample correlations.

3 Note that removing a factor will cause all of the other
factor returns to change. We also performed the more
rigorous technique of projecting the factor covariance
matrix to the new basis with one factor deleted. However,
we found no material difference between the two results.
Consequently, in this paper, we adopt the simpler method
of simply setting the factor volatility to zero.
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