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AUGMENTED RISK MODELS TO MITIGATE FACTOR
ALIGNMENT PROBLEMS

Anureet Saxena∗ and Robert A. Stubbs†

Construction of optimized portfolios entails a complex interaction between three key enti-
ties, namely, the risk factors, the alpha factors and the constraints. The problems that
arise due to mutual misalignment between these three entities are collectively referred
to as Factor Alignment Problems (FAP). Examples of FAP include risk underestimation
of optimized portfolios, undesirable exposures to factors with hidden and unaccounted
systematic risk, consistent failure in achieving ex-ante performance targets, and inability
to harvest high quality alphas into above-average IR. In this paper, we give a detailed
analysis of FAP and discuss solution approaches based on augmenting the user risk model
with a single additional factor y. For the case of unconstrained mean–variance optimiza-
tion (MVO) problems, we develop a generic analytical framework to analyze the ex-post
utility function of the corresponding optimal portfolios, derive a closed-form expression
of the optimal factor volatility value and compare the solutions for various choices of y

culminating with a closed-form expression for the optimal choice of y. Augmented risk
models not only correct for risk underestimation bias of optimal portfolios but also push
the ex-post efficient frontier upward thereby empowering a portfolio manager (PM) to
access portfolios that lie above the traditional risk–return frontier. We corroborate our
theoretical results by extensive computational experiments, and discuss market conditions
under which augmented risk models are likely to be most beneficial.

1 Introduction

Factor models play an integral role in quantitative
equity portfolio management. Their applications
extend to almost every aspect of quantitative
investment methodology including construction

∗Vice President, Analyst, Allianz Global Investors, 600
West Broadway, San Diego, CA 92101, USA.
†Vice President, Research, Axioma, Inc., 400 Northridge
Road, Suite 850, Atlanta, GA 30350, USA.

of alpha models, risk models, portfolio con-
struction, risk decomposition, and performance
attribution. Given their pervasive presence in
the field and the natural trend toward specializa-
tion, it comes as no surprise that different groups
of researchers are often involved in developing
factor models for each one of the aforementioned
applications.

For instance, a team of quantitative portfolio man-
agers (PM) can develop an in-house model for
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alpha generation, and procure a factor model for
the purposes of risk management from a third-
party risk model vendor. Subsequently, they can
combine the two models within the framework of
Markowitz mean–variance optimization (MVO)
framework to construct optimal portfolios. A
completely different factor model can then be
used for the purposes of performance attribution
to identify the key drivers and detractors of per-
formance. Notably, the choice of factors in each
one of these factor models need not be identical,
thereby introducing incongruity in the portfolio
management process. To further complicate the
matters, the constraints in the quantitative strat-
egy can introduce additional systematic risk expo-
sures that are not captured by the risk model. The
problems that arise due to the interaction between
the alpha model, the risk model, and constraints in
an MVO framework are collectively referred to as
Factor Alignment Problems (FAP). Detailed the-
oretical investigation of FAP leading to a solution
methodology in the form of augmented risk mod-
els constitute the emphasis of this paper. Next we
give a brief survey of existing research on FAP,
and highlight our key contributions.

The primary purpose of portfolio optimization
is to create a portfolio having an optimal risk–
return tradeoff. If a portion of systematic risk
exposure of the portfolio is inadequately cap-
tured by the risk model then the resulting portfolio
cannot be expected to be optimal ex-post, its ex-
ante optimality notwithstanding. In other words,
FAP symbolize the difficulties that a PM faces
in ensuring the ex-post optimality of a portfo-
lio that is deemed to be optimal ex-ante in the
MVO framework. Examples of FAP include risk
underestimation of optimized portfolios, unde-
sirable exposures to factors with hidden and
unaccounted systematic risk, consistent failure
in achieving ex-ante performance targets, and
inability to harvest high quality alphas into above-
average IR.

Several authors have examined FAP recently and
have proposed various solution techniques. Sax-
ena and Stubbs (2013) conducted an empirical
case study to understand the risk underestima-
tion problem, a prominent symptom of FAP. The
authors used real-world data and a battery of
backtests to demonstrate the perverse and perva-
sive nature of FAP. They demonstrated that all
optimized portfolios share a common property,
namely, they have exposure to certain kinds of
latent systematic risk factors that are uncorrelated
with factors of the risk model that was used to gen-
erate them. Ceria et al. (2012) examine potential
sources of the mentioned systematic risk factors
and suggest that proprietary definitions of cer-
tain style (B/P, E/P, etc.) and technical factors can
introduce them. Lee and Stefek (2008) illustrate a
similar idea by using two different definitions of a
momentum factor to define alpha and risk factors,
and argue that the optimizer is likely to load up
on the difference between the two thereby taking
unintended bets. Saxena and Stubbs (2012) dis-
cuss a detailed empirical case study on FAP using
the USER model (see Guerard et al., 2012a);
among other things, they quantify the portion of
unaccounted systematic risk that can be attributed
to the constituent factors of the USER model and
constraints present in the strategy. Unlike previ-
ous studies which have investigated FAP from
an empirical standpoint, we pursue a theoreti-
cal exploration of this topic. We go back to the
roots of mean–variance optimization, and demon-
strate analytically the tendency of the optimizer
to adversely exploit inconsistencies between the
alpha and risk models, thereby compromising the
efficiency of the resulting portfolios. Our analy-
sis not only yields diagnostic tools to identify the
presence of FAP, but also provides a natural rem-
edy to FAP in the form of augmented risk models.
The rest of this paper is organized as follows.

Section 2 discusses a prototypical quantitative
strategy with the aim of identifying some of
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the common symptoms of FAP, such as the risk
underestimation problem, and undesirable and
unintended exposure to systematic risk factors
which are not captured by the risk model. The
aim of this section is to provide a simple but
comprehensive practical example which can be
used to put the theoretical results presented in
the later part of the paper in context. We return
to the example discussed in Section 2 again in
Section 7 wherein we show how our proposed
methodology address FAP, and improves risk-
adjusted returns. Section 3 lays out the theoretical
model which is used in the rest of the paper. We
discuss the assumptions we make in our analytical
derivations, and provide theoretical and empirical
justifications to them. Among other things, we
introduce the notion of an augmented risk model
which is used throughout the paper to remedy
FAP. Given an arbitrary asset–asset covariance
matrix Q, and a risk factor y, an augmented
risk model is defined by the covariance matrix
Qy = Q + νyyT. In other words, if Q was
derived from a factor model, Qy is derived from
an enhanced factor model that has all the origi-
nal factors, and an additional augmenting factor
y which is assumed to be uncorrelated with the
original suite of risk factors.

In Section 4 we focus on the unconstrained MVO
model, and develop a generic analytical frame-
work to analyze the ex-post utility function of the
corresponding optimal portfolios, derive a closed-
form expression of the optimal factor volatility
and compare the solutions for various choices
of y culminating with a closed-form expression
for the optimal choice of y. Among other things,
we show that using an augmented risk model
with an appropriately chosen volatility param-
eter ν not only solves the risk underestimation
problem but also improves the ex-post utility
function. The key result in this paper, referred
to as the “Pushing Frontier Theorem” shows that
using an augmented risk model shifts the ex-post

efficient frontier upward, thereby allowing the
PM to access portfolios that are not attainable
using the traditional MVO approach. In Sec-
tion 5, we extend these results to a constrained
MVO model. We employ the concept of implied
alpha to allow us to make a smooth transition
from unconstrained MVO to its constrained coun-
terpart. Recall that implied alpha is obtained
by tilting the alpha in the direction of binding
constraints, and acts as the de facto alpha for
constrained MVO models.

Application of augmented risk models requires
two key parameters, namely, the choice of an
augmenting factor y and an estimate of its volatil-
ity ν. In Section 6, we discuss an exponentially
weighted moving average (EWMA) volatility
model to calibrate the volatility of augmenting
factors. The emphasis in this section is on simplic-
ity and practicality of the proposed approach, and
we discuss a model that meets both of these crite-
ria. Section 7 has a threefold emphasis. First, we
give extensive empirical results that corroborate
the theoretical findings discussed in the preced-
ing sections. Second, we introduce the notion
of “frontier spreads” to capture improvements in
risk-adjusted returns that result due to the applica-
tion of augmented risk models. Subsequently, we
study the impact of various strategic parameters
(turnover limits, asset bounds, etc.) on the frontier
spreads, and also seek to identify market regimes
where using an augmented risk model is most
likely to yield significant improvements. Finally,
we present computational results with a wide vari-
ety of alpha models to attest the robustness of the
proposed approach. Section 8 concludes the paper
with some closing remarks.

2 A practical active strategy

The focus of this section is twofold. First, we want
to use a very simple value momentum strategy
to illustrate a classic symptom of FAP, namely,
the risk underestimation problem. Second, we
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show how the risk underestimation problem can
be traced to certain hidden systematic risk factors
that are not captured by the factor structure of the
base risk model (BRM). Among other things, this
sets the stage for the theoretical model discussed
in the following section which assumes the exis-
tence of systematic risk factors missing from the
BRM.

We used the following strategy in our experi-
ments.®,1

maximize Expected Return

s.t.

Fully invested long-only portfolio

Active GICS® sector exposure

constraint (±20%)

Active GICS industry exposure

constraint (±10%)

Active asset bounds constraint

(±2%)

Turnover (two-way) constraint

(16%)

Active Risk constraint (σ%)

Benchmark = Russell® 3000.

We used a fundamental risk model as our
BRM in defining the active risk constraint.2 The
expected returns were derived using an equal
weighted combination of the BP variable in the
USER model (Guerard et al., 2012b) and the

medium-term momentum factor in the BRM. We
ran monthly backtests based on the above strategy
in the 1999–2009 time period for various values
of σ chosen from {1.0%, 1.1%, . . . , 5.0%}.
We use the notion of the bias statistic to identify
statistically significant biases in risk prediction.
If the ex-ante risk prediction is unbiased, then the
bias statistic should be close to 1.0 (see Saxena
and Stubbs, 2013 for more details). A bias statis-
tic value which is significantly above (below)
1.0 indicates downward (upward) biases in risk
prediction. Figure 1 reports the bias statistics
of the portfolios for various risk target levels.
Clearly, the bias statistics are significantly above
the 95% confidence interval, thereby confirming
the statistical significance of the downward bias in
predicted risk estimates. We next focus on opti-
mal portfolios that were generated when a risk
target of 3.0% was employed.

At σ = 3.0%, the optimal portfolios had real-
ized active risk of 3.81%. The bias statistic for
these portfolios was 1.27 which clearly lies out-
side the 95% confidence interval [0.87, 1.13].
Figure 2 further corroborates this phenomenon
by showing the time series of realized risk of
the optimal portfolios computed using 24 period
realized returns on a rolling horizon basis; we
also show the predicted risk of the portfolios
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Figure 1 Bias statistic (active risk).
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Figure 2 Time series of realized (24-period rolling) and predicted risk of optimal portfolios constructed using
our BRM.

for the sake of comparison. While the degree
of under-prediction might have varied, the real-
ized risk was consistently above the predicted
risk in most of the periods. It is tempting to
believe that the risk models used in construc-
tion of the optimized portfolios were themselves
biased, and the risk underestimation problem is
simply an artifact of the bias in the BRM. Sax-
ena and Stubbs (2013) examined this issue and
demonstrated that the base risk model, in fact,
produces unbiased risk estimates for random port-
folios. Consequently, the bias depicted in Figure 1
is peculiar to optimized portfolios.

We introduce two additional concepts to assist us
in tracing the sources of the risk underestimation
problem. Let X denote the n×m exposure matrix
associated with the BRM; n denote the number of
assets; and m denote the number of factors in the
BRM. Given an arbitrary factor α, consider the
following linear regression model that regresses
α against factors in the base risk model,

α = Xu + α⊥;
the residual α⊥ in the above regression model
is referred to as the orthogonal component of α,
whereas αX = Xu is referred to as the spanned
component of alpha. Mathematically,

αX = X(XTX)−1XTα; α⊥ = α − αX.

By virtue of being uncorrelated with all the
factors included in the BRM, α⊥ has no sys-
tematic risk exposure with respect to the BRM;
in other words, the BRM assumes that α⊥ has
only idiosyncratic risk. This assumption can be
problematic if certain systematic risk factors are
missing from the BRM and α⊥ has overlap with
some of the missing systematic risk factors. As
we will soon discover, this indeed turns out to be
the case, thus providing a key insight into the risk
underestimation problem.

Next we introduce the notion of augmented
regressions which can be used to determine if
the orthogonal component of a given factor has
overlap with systematic risk factors missing from
the BRM. Consider a linear regression model that
regresses asset returns against factors in the BRM,
represented by the matrix X, and the normalized
orthogonal component y = 1

‖α⊥‖α⊥ of α. If α⊥
was truly idiosyncratic in nature then the factor
returns associated with y, denote by fy, in the
above regression model should not be statistically
significant. Alternatively, if fy is indeed statisti-
cally significant and has nontrivial volatility then
we can be assured that α⊥ has overlap with sys-
tematic risk factors missing from the base risk
model.
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Figure 3 Time series of t-statistics (absolute values) associated with the orthogonal component.

Figure 3 shows the time series of (absolute)
t-statistics associated with the orthogonal com-
ponent of alpha (α) and implied alpha (α̃) in
the corresponding augmented regression model;
α⊥ (α̃⊥) was found to be statistically significant
(90% cf) in 40% (20%) of the periods. Given that
a median factor in our BRM is statistically sig-
nificant in about 20–30% of the periods, these
statistics imply that α⊥ and α̃⊥ are as significant
as half of the factors in the BRM. Figure 4 reports
the annualized volatility of factor returns associ-
ated with α⊥ and α̃⊥ computed using a rolling
24-period window. As evident from the chart,
not only are α⊥ and α̃⊥ statistically significant,

but their factor returns also exhibit significant
volatility. To put these numbers in perspective,
note that a median normalized3 factor in the BRM
has annualized volatility of roughly 30%.

All of these results indicate that the orthogonal
component of α and α̃ does carry a significant
amount of systematic risk which is not accounted
for during the process of portfolio construc-
tion. The section that follows builds on these
observations; specifically we propose a theoret-
ical model that explicitly accounts for systematic
risk factors missing from the BRM, and use it to
assess the marginal cost of FAP.
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Figure 4 Time series of realized systematic risk of the orthogonal component computed using a rolling
24-period window.
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3 Theoretical model

In this section, we describe a theoretical model
that is used in the rest of the paper. We discuss
various underlying assumptions, and provide
theoretical or empirical justifications wherever
possible. We assume that the returns process is
governed by the following stationary stochastic
process,

r = Xf + Zg + u,

where r ∈ Rn×1 denotes the vector of asset
returns, n denotes the number of assets; X ∈
Rn×m denotes the exposure matrix associated
with common systematic risk factors that are
present in the BRM; and Z ∈ Rn×p denotes the
exposure matrix associated with systematic risk
factors missing from the BRM. For the sake of
brevity, we refer to systematic risk factors repre-
sented by X and Z matrices as X and Z factors,
respectively. Let f ∈ Rm×1 and g ∈ Rp×1 denote
the random factor returns associated with X and
Z factors, whereas u ∈ Rn×1 denotes the vector
of random asset-specific returns. Without loss of
generality, we assume that XTX = I, XTZ = 0
and ZTZ = I. Additionally, we assume that

(f, g, u) ∼ N







0

0

0


,




� 0 0

0 � 0

0 0 σ2
s I





.

Let QT = E[rrT] denote the asset–asset covari-
ance matrix; the risk model associated with QT

is referred to as the true risk model. It is easy to
verify that QT = X�XT + Z�ZT + σ2

s I.

Next, consider a base risk model (BRM) that
is calibrated by using only the X-factors. Let
Q denote the covariance matrix associated with
such a risk model, and let �̂ ∈ Rm×m and
�̂ ∈ Rn×n denote the corresponding factor–factor
covariance matrix and the diagonal matrix of
asset-specific variances, respectively; we use Q

as a proxy for the BRM. Using standard error anal-
ysis arguments from linear regression theory (see

Greene, 2002) it can be shown that,4

�̂ = � + σ2
uI, and

�̂ = Diag(Z�ZT) + σ2
s Diag(I − XXT).

Diag(M) denotes the diagonal matrix obtained
by retaining only the diagonal entries of a square
matrix M. In our analysis we make the following
two assumptions,

(1) �̂ = �.
(2) �̂ = σ2

s I.

Next, we give theoretical and empirical results to
justify the above assumptions.

It is instructive to examine how the systematic
risk that arises by virtue of the exposure to the Z-
factors is captured by the BRM. For the sake of
illustration, consider the scenario where there is
exactly one missing systematic risk factor, say z

with ‖z‖ = 1. Let � = [σ2
z ]. Let σ2

T (z) = zTQT z

and σ2
Q(z) = zTQz denote the true and estimated

variance of factor z. Note that

σ2
Q(z) = zTQz

= zT�̂z

= σ2
s + σ2

z z
TDiag(zzT)z

− σ2
s z

TDiag(XXT)z

= σ2
s + σ2

z

n∑
i=1

z4
i − σ2

s

n∑
i=1

m∑
j=1

X2
ijz

2
i

< σ2
s + σ2

z

n∑
i=1

z2
i

= σ2
s + σ2

z

= zTQT z

= σ2
T (z).

The above result has far-reaching consequences
that we discuss next. By virtue of missing the Z
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factors, the BRM differs from the true risk model
QT in key respects. First, the BRM assumes that
any factor (portfolio) which is uncorrelated with
the X factors has only idiosyncratic risk. For
instance, the systematic variance of z as com-
puted by the BRM is given by zTX�̂XTz = 0.
In other words, the risk model Q fails to account
for systematic risk of portfolios that arises by
virtue of exposure to the Z factors. Second,
there is a small increment in the specific risk
estimate of Z as determined by the BRM; essen-
tially a part of the systematic volatility that can
be attributed to Z factors is captured by the
specific risk component, namely �̂, of Q. Unfor-
tunately, the increase in the specific risk of z

is very small as compared to its true systematic
risk. In other words, the specific risk component
of the BRM fails to capture the true systematic
risk that arises by virtue of exposure to the Z

factors resulting in the risk underestimation prob-
lem. Furthermore, by only utilizing information
contained in the diagonal terms of Z�ZT, the
BRM fails to capitalize the nondiagonal terms, a
phenomenon whose impact grows quadratically
with the number of assets. To see this, note
that

�̂ii = σ2
s +

p∑
j,k=1

Zij�jkZki − σ2
s

m∑
j=1

X2
ij.

As n → ∞, Zij → 0, and Xij → 0 assuming that
X and Z factors have nonzero exposure to a

sizable subset of the asset universe. Thus, unless
the Z factors have unusually high volatilities we
can assume that �̂ii = σ2

s . To provide empiri-
cal support to this assumption we conducted the
following experiment.

We generated a custom risk model (CRM) that
includes all factors in the BRM and also the
orthogonal component of the BP variable (see
Section 2). In other words, we enlarged the suite
of risk factors in the BRM by adding BP⊥, used
the enlarged suite of risk factors in cross-sectional
regressions to generate time series of factor and
asset-specific returns which were subsequently
used to generate the CRM. We also generated the
time series of optimal portfolios using the setup
described in Section 2, and computed the time
series of predicted active systematic and specific
risk estimates for the resulting portfolios using the
BRM and CRM; recall that the portfolios were
constructed using the BRM. Figure 5 reports the
key results. Two remarks are in order.

First, the estimates of systematic risk produced
by the CRM are consistently higher than those
produced by the BRM. This confirms the inabil-
ity of the BRM to correctly gauge the systematic
risk that arises by virtue of exposure to α⊥ (also
see Section 2). Second, the difference between
the specific risk estimates is roughly two orders
of magnitude smaller than the difference between
the systematic risk estimates. All in all, these
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Figure 5 Predicted active specific and factor risk using BRM and CRM (portfolio constructed using BRM).
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results indicate that the specific risk estimates
produced by the two risk models are materially
indistinguishable as far as predicted active risk
computation is concerned, and hence provides
credence to our assumption �̂ii = σ2

s .

Next we move our focus to �̂. Note that due
to estimation errors the factor–factor covariance
matrix �̂ associated with the BRM differs from
the true covariance matrix � by σ2

s I. While these
estimation errors can be extremely important for
risk-based strategies (minimum variance, risk
parity, etc.), their significance for active strate-
gies is considerably reduced by several factors.
For example, most portfolio managers (PM) often
impose fairly tight bounds on exposure to com-
mon or well-known systematic risk factors due
to compliance reasons and also to avoid unin-
tended beta exposure. Furthermore, volatilities of
common systematic risk factors tend to be sig-
nificantly higher than specific risk estimates thus
mitigating the impact of estimation errors. For
instance, Figure 6 shows the ratio of average vari-
ance of systematic risk factors in a particular sta-
tistical risk model5 and the average asset-specific
variance obtained using the same risk model. Note
that the factor variances are roughly 30–50 times
larger than the asset-specific variances. Based on

these observations, and given that the focus of
this paper is on model specification error and not
on estimation error, we assume that �̂ = �. To
summarize, we assume that the BRM is given by
Q = X�XT + σ2

s I.

Throughout this paper, we work with portfolios
generated as an optimal solution to the following
MVO problem.

max αTh − λ
2hTQh

s.t.

h ∈ C,

where C represents a suitable set of constraints.
For instance, for a PM managing a long-only
portfolio, C would represent the universe of all
fully invested long-only portfolios with active
asset, industry, and sector exposure constraints.
Let Q denote the risk model used during port-
folio construction and h(Q) denote the resulting
optimal portfolio. Our objective in this paper is
to evaluate and compare portfolios generated for
various choices of the risk model Q. Naturally,
we need a common metric of comparison; we use
the following utility function for this purpose.

U(h) = αTh − λ

2
hTQT h.

The above utility function can be regarded as
an expected–return realized–risk utility function,
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Figure 6 Ratio of average factor variance and average asset-specific variance in our statistical risk model.
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and is referred to as the “realized” utility function
so as to differentiate it from the “predicted” util-
ity function given by αTh − λ

2hTQh. We would
like to emphasize that we used the above utility
function only to get analytical insights into FAP.
The insights thus obtained are equally applica-
ble and meaningful when applied in a realistic
setting wherein the actual realized returns, and
not expected returns, are used for performance
evaluation (see Section 7).

Finally, we introduce the concept of augmented
risk models, a key device that is used throughout
this paper to devise solutions to FAP. Given an
arbitrary factor y satisfying yTX = 0 and ‖y‖ = 1,
let Qy = Q + νyyT where ν denotes the volatil-
ity parameter which is left unspecified. We will
see later the impact of different choices of ν on
the resulting optimal portfolios h(Qy), and how
ν can be calibrated in practice. Qy is referred
to as an augmented risk model. Our solution to
FAP entails replacing the base risk model Q by
an augmented risk model Qy; we compare and
contrast portfolios obtained for various choices
of augmenting factors y, and derive a closed-
form expression for the optimal augmenting
factor.

With this background, we initiate our analysis
with the case when C = φ, i.e., an unconstrained
MVO model.

4 Augmented risk models: Unconstrained
MVO

Throughout this section, we assume that C = φ;
additionally, unless otherwise stated we also
assume that α⊥ �= 0. Let y denote an arbitrary aug-
menting factor satisfying yTX = 0 and ‖y‖ = 1.
The proposition that follows sheds light on the
effect of using an augmented risk model on the
structure of optimal holdings.

Proposition 1

h(Qy) = h(Q) − 1

λ

(
νyTα⊥

σ2
s (σ

2
s + ν)

)
y

yTh(Qy) = yTα⊥
λ(σ2

s + ν)
.

(1)

First, note that if yTα⊥ = 0, then h(Qy) = h(Q)

regardless of the value of ν. In other words, using
an augmenting factor y will materially change the
structure of the optimal holdings only if α⊥ has a
nonzero exposure to y. This observation reiterates
the integral role of α⊥ in any solution technique
to FAP that is based on using an augmented risk
model.

Second, assuming that yTα⊥ �= 0 and ν �= 0, the
above proposition shows that using an augment-
ing factor y is equivalent to tilting the optimal
portfolio h(Q) in the direction away from y. Fur-
thermore, by controlling the volatility ν of y in the
augmented risk model, the end user can carefully
manage the extent of tilting. For instance, while
using a value of ν = 0 annuls the effect of the
augmenting factor, choosing ν = ∞ completely
eliminates the exposure of the optimal portfolio
h(Qy) to factor y. Naturally, a portfolio manager
will choose a value of ν in between these extreme
values so as to manage the exposure of the opti-
mal portfolio to factor y depending on the IC and
systematic risk of y.

Third, when y = 1
‖α⊥‖α⊥, it can be shown that

h(Qy) = 1

λ

(
Q−1αX + 1

σ2
s + ν

α⊥
)

.

Thus by varying the parameter ν we can control
the relative weight of α⊥ in the optimal holdings.
Since overloading of α⊥ is the main source of risk
underestimation (see Saxena and Stubbs, 2013) it
follows that the bias in the risk prediction can
be completely eliminated by using an appropriate
value of ν; y = 1

‖α⊥‖α⊥ is known as the Alpha
Alignment Factor (AAF; see Saxena and Stubbs,
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2012, 2013). But, α⊥ is not the only factor that
can be used to remedy the risk underestimation
problem.

Fourth, consider the case when y = 1
‖Pα⊥‖Pα⊥,

where P = Z(ZTZ)−1ZT = ZZT is the projec-
tion matrix associated with Z; thus Pα⊥ denotes
the projection of α⊥ to the space of missing fac-
tors. There is a subtle but important distinction
between using α⊥ and Pα⊥ as the augmenting
factor. Recall that the act of augmenting the base
risk model amounts to tilting the optimal portfolio
in the direction away from the augmenting factor.
Thus while using α⊥ reduces the exposure of the
portfolio to the entire orthogonal component of
α, using Pα⊥ reduces the exposure to only that
portion of α⊥ that has systematic risk. Since the
portion of α⊥ that has no systematic risk, namely
α⊥ − Pα⊥, does not contribute to the FAP, Pα⊥
should be able to outperform α⊥ as an augmenting
factor.

As mentioned in Section 3, we will use the fol-
lowing utility function to evaluate and compare
different portfolios,

U(h) = αTh − λ

2
hTQT h.

Since our focus in this section is on optimal
portfolios derived from augmented risk models,
we define U(y, ν) to be U(h(Qy)) for ease of
notation. To present the results in this section
we introduce some additional notations defined
below.

• Let δ2 = αT⊥Z�ZTα⊥
‖α⊥‖2 denote the systematic

variance of 1
‖α⊥‖α⊥.

• Let ε2 = yTZ�ZTy denote the systematic
variance of y.

• Let γ = αT⊥Z�ZTy

‖α⊥‖ denote the joint systematic

covariance of 1
‖α⊥‖α⊥ and y.

• Let η = ν(yTα⊥)

σ2(ν+σ2)
.

The proposition that follows gives a closed-form
expression for U(y, ν) in terms of U(h(Q)).

Proposition 2

U(y, ν) = U(h(Q))

+ 1

2λ

(
2ηγ‖α⊥‖

σ2
− η2(σ2 + ε2)

)
.

Note that if ZTα⊥ = 0 then γ = 0 and U(y, ν) ≤
U(h(Q)). In other words, if the orthogonal com-
ponent of α has no systematic risk then there is
no marginal benefit of using an augmented risk
model. This observation highlights the fact that
it is the component ZZTα⊥ of α⊥ that has sys-
tematic risk which holds the clues to the solution
of FAP. Our experiments with a collection of
real-life alphas of portfolio managers from many
different firms show that α⊥ not only has sys-
tematic risk, but also its magnitude is comparable
to the systematic risk of standard factors in fun-
damental risk models (see Saxena and Stubbs,
2013). In the rest of this section, we assume that
ZTα⊥ �= 0.

Recall that we have not yet fixed the volatility ν

of the augmenting factor y. The proposition that
follows gives a closed-form expression for ν that
maximizes U(y, ν).

Proposition 3 For a given factor y, U(y, ν) is
maximized at

νopt = σ2

(σ2
s +ε2)(yTα⊥)

γ‖α⊥‖ − 1
.

Furthermore,U(y, νopt) = U(h(Q))+‖α⊥‖2

2λσ4
s

γ2

σ2
s +ε2 .

First, note that if γ = 0 then U(y, νopt) =
U(h(Q)) and there is no marginal benefit of aug-
menting the base risk model with factor y. Thus,
using an augmented risk model results in portfo-
lios with better ex-post performance only if the
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systematic covariance of the augmenting factor y

and α⊥ is nonzero; in other words, an augment-
ing factor is useful only if it can capture at least
some portion of the systematic risk in α⊥. Sec-
ond, it can be easily verified that if y = 1

‖α⊥‖α⊥ or

y = 1
‖Pα⊥‖Pα⊥ then ν = yTZ�ZTy, the true sys-

tematic variance of y. This statement, however,
cannot be generalized for any arbitrary factor y.

Let 
(y) = γ2

σ2
s +ε2 . By Proposition 3, it follows

that U(y, νopt) = U(h(Q)) + ‖α⊥‖2

2λσ4
s


(y) and our

quest for an optimal augmenting factor y that
maximizes the utility function U(y, νopt) reduces
to solving the following problem,

max 
(y)

s.t. ‖y‖ = 1

XTy = 0.

(2)

Before we present the solution to the above prob-
lem, note the following inequality which can be
easily verified.




(
1

‖α⊥‖α⊥
)

≤ 


(
1

‖Pα⊥‖Pα⊥
)

. (3)

The above inequality confirms the aforemen-
tioned conjecture, namely that Pα⊥ is a better
augmenting factor than α⊥. Naturally, we are
interested in knowing if there is a better factor
than Pα⊥. The proposition that follows settles this
question.

Proposition 4 The optimal solution to (2) is

given by, yopt = Z(I+σ2�−1)−1ZTα⊥
‖Z(I+σ2�−1)−1ZTα⊥‖ . Furthermore,

when the base risk model is augmented with
yopt using the optimal volatility value given in
Proposition 3, the resulting optimal holdings are
identical to those obtained by using the true risk
model. Thus h(Qyopt

) = h(QT ).

Several comments are in order. First, the
above proposition not only gives a closed-form

expression for the optimal choice of the aug-
menting factor but also shows that using the
corresponding factor, in fact, replicates the effect
of using the true risk model. It is indeed remark-
able that the overall impact of using the true risk
model can be captured by a single augmenting
factor.

Second, consider the case when there is exactly
one missing factor, i.e., Z has exactly one column,
say z. In this case, it can be shown that yopt =
z. Thus when exactly one factor is missing from
the base risk model, it is optimal to augment the
base risk model with the missing factor. Third, the
results presented so far can be summarized as

U(α⊥) ≤ U(Pα⊥) ≤ U(yopt) = U(h(QT )),

(4)
where we have dropped the condition ‖y‖ = 1
and defined U(y) = U(y, νopt), where νopt is the
optimal value of ν given in Proposition 3. The
above inequality shows that our search for an
augmenting factor and use of Qy in portfolio
optimization problems is not in vain. While we
may not currently have the technology to com-
pute ZZTα⊥ without the explicit knowledge of
Z, augmenting the base risk model with α⊥ is a
step in the right direction.

We started this section by mentioning the risk
underestimation problem. After having estab-
lished some interesting facts about augmenting
factors, it is instructive to revisit the risk under-
estimation problem and understand whether the
augmenting factors (α⊥, Pα⊥, yopt, etc.) which
lead to superior ex-post performance also give
rise to unbiased risk estimates.

Given an arbitrary augmenting factor y and its
associated optimal volatility νopt given by Propo-
sition 3, y is said to be a risk-unbiased factor if
the predicted risk of h(Qy) is equal to its true risk,
i.e.,

h(Qy)
TQyh(Qy) = h(Qy)

TQT h(Qy).
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Thus, augmenting the base risk model with a risk-
unbiased factor completely eliminates the bias in
risk prediction. The proposition that follows gives
examples of risk-unbiased factors.

Proposition 5 α⊥, Pα⊥, and yopt are risk-
unbiased factors.

The above proposition has an important practical
ramification apropos factor alignment problems
that we discuss next. The fact that there is a
multitude of risk-unbiased factors which give
rise to optimal portfolios with widely varying
ex-post performance (see Equation (4)) shows
that risk underestimation is only a symptom of
a much bigger and complex ailment, namely
the factor alignment problem. Just as eliminat-
ing a symptom of a disease is not necessarily
the same as curing the disease, simply circum-
venting the risk underestimation problem does
not necessarily shield a PM from the ill-effects
of the FAP. Many practitioners fail to acknowl-
edge this aspect of portfolio optimization and
resort to various kinds of ad hoc techniques
that resolve the risk underestimation problem—
the symptom, without actually addressing the
factor alignment problem—the disease. We
examine one such ad hoc approach in detail
and compare it with using an augmented risk
model.

One of the widely used solutions to risk under-
estimation problems is to artificially modify the
parameters of the strategy in anticipation of the
bias in risk prediction. For instance, a PM can
reduce the maximum allowable risk limit in the
presence of a risk constraint or increase the risk
aversion parameter when the risk/variance term
is present in the objective function. Both of these
approaches are equivalent to scaling the covari-
ance matrix Q by a factor τ ≥ 1. Next we show
that this scaling approach is outperformed by the
AAF approach.

For τ > 0, let h(τ) denote the optimal solution to
the following problem,

max
h

αTh − τλ

2
hTQh.

Let τ∗ denote the value of τ that maximizes the
ex-post utility of h(τ) given by,

U(h(τ)) = αTh(τ) − λ

2
h(τ)TQT h(τ).

The proposition that follows shows that the
expected ex-post utility function obtained by
using the AAF is at least as good as the optimal
utility function that can be obtained by varying
the risk aversion parameter and using the base
risk model.

Proposition 6

U(h(τ∗)) ≤ U(h(Q)) + ‖α⊥‖2

2λσ4



(
1

‖α⊥‖α⊥
)

.

Furthermore, the above inequality holds strictly
unless α⊥ = 0 or αX = 0.

Until now we have discussed and presented vari-
ous results that show how augmented risk models
can be used to derive MVO portfolios with better
ex-post utilities. A related, and equally impor-
tant, consideration is the effect of these models
on the ex-post risk–return frontier. Does using an
augmented risk model simply move the chosen
portfolio on the risk–return frontier or does it actu-
ally push the frontier upward thereby allowing the
PM to access previously inaccessible portfolios?
The discussion that follows answers this question.

Given an arbitrary covariance matrix Q, one can
define a risk–return frontier that is specified by
the associated risk model. For instance, consider
the following MVO problem parameterized by λ
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and Q,

max
h

αTh − λ

2
hTQh.

Let h(Q, λ) denote the optimal solution to the
above problem, and let R(Q, λ) = αTh and
σ(Q, λ) = √

hTQT h denote the expected return
and realized risk of h.6 By choosing various val-
ues of the risk aversion parameter λ, we can
derive a risk–return frontier associated withQ.An
interesting question is, how does the risk return
frontier derived from the base risk model Q com-
pare with the one derived using an augmented risk
model Qy. The theorem that follows answers this
question.

Theorem 7 (Pushing Frontier Theorem) If (σf ,

rf ) lies on the risk frontier associated with the
base risk model then there exists a point (σf , r̂f )

on the ex-post risk–return frontier associated
with Qy where y = 1

‖α⊥|α⊥ such that rf ≤ r̂f .
Furthermore, rf < r̂f unless αX = 0 or α⊥ = 0.

Proof. The existence of a point (σf , r̂f ) on the
ex-post risk–return frontier associated with Qy

which has an ex-post risk of σf is straightforward.
We next show that the ex-post return r̂f of the
associated portfolio is greater than or equal to rf .

Let ĥ denote the optimal portfolio associated with
(σf , r̂f ) and let λ̂ denote the risk aversion param-
eter that gives rise to ĥ in conjunction with the
risk model Qy. Similarly, let h denote the optimal
portfolio associated with (σf , rf ). By Proposi-
tions 3 and 6 it follows that the ex-post utility
function of ĥ is greater than or equal to the ex-post
utility function of h evaluated at the risk aversion
parameter λ̂. Consequently,

U(h) ≤ U(ĥ),

αTh − λ̂

2
hTQT h ≤ αTĥ − λ̂

2
ĥTQT ĥ,

αTh − λ̂

2
σ2

f ≤ αTĥ − λ̂

2
σ2

f

αTh ≤ αTĥ. �

Next, we move our attention to constrained MVO
models.

5 Augmented risk models: Constrained
MVO

In this section we extend the results of the previ-
ous section to constrained MVO problems of the
form,

maxh αTh − λ
2hTQh

s.t. Ah = b.
(5)

Although we focus our discussion on equality
constrained problems, all of the results presented
in this section can be easily generalized to MVO
problems with arbitrary convex constraints.

We would like to remind the reader that the
gradients of constraints as represented by rows
of the matrix A can themselves be considered
as factors. Thus when we talk about spanned
(orthogonal) component of a constraint, we refer
to the spanned (orthogonal) component of the cor-
responding constraint gradient. For instance, if
one of the constraints enforces beta neutrality of
the portfolio, then the corresponding constraint
gradient is simply the well-known market sen-
sitivity or beta factor. Indeed, not all constraint
gradients have such simple interpretation. For
instance, the gradient associated with a turnover
constraint cannot usually be associated with a
known style or industry factor.

The key concept that allows us to make a transi-
tion from the unconstrained to constrained setting
is that of implied alpha. Recall that implied alpha,
α̃, is the expected return vector which when used
in an unconstrained setting gives rise to the same
optimal holdings as derived from Equation (5).
In other words, if h∗ is the optimal solution to
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Equation (5) then h∗ is also an optimal solution
to,

max
h

α̃Th − λ

2
hTQh.

Clearly α̃ = λQh∗. Note that the implied alpha
depends on the optimal portfolio, and hence by
implication, on α and Q. Thus if an augmented
risk model, say Qy, is used in Equation (5) then
the implied alpha is given by α̃ = λQyh

∗.

To give the reader some appreciation of the influ-
ence of constraints in determining implied alpha
we give an alternative derivation of α̃. Recall that
any optimal solution to Equation (5) satisfies the
following first-order optimality conditions:

α − λQh − ATu = 0

Ah = b,

where u denotes the optimal Lagrange multipli-
ers associated with the equality constraints. From
the above equations it follows that α̃ = α − ATu.
In other words, the implied alpha is obtained by
tilting the alpha in the direction of constraints
as determined by the optimal Lagrange multipli-
ers. The above expression for α̃ has an important
practical implication that we discuss next.

Consider the case when α⊥ = 0, i.e., the expected
return vector is spanned by the base risk factors.
In the unconstrained setting this would imply the
absence of FAP. Factor alignment could still be an
issue in the constrained setting, however, if some
of the constraints are not spanned by the regular
risk factors (X) and have nonzero Lagrange multi-
pliers associated with them; in this case, α̃⊥ �= 0
and the optimizer will tend to overload on α̃⊥.
To conclude, it is the implied alpha, α̃, and not
alpha, α, that determines the key characteristics of
the optimal portfolio in a constrained setting, and
hence serves as a watershed between constrained
and unconstrained MVO problems.

We also like to emphasize that many of the con-
straints in real-world quant strategies that are
binding at the optimal portfolios do have signif-
icant orthogonal components. For instance, most
quant strategies impose bounds on maximum
asset holdings for each asset, and the correspond-
ing constraint is usually never spanned by the
regular risk factors; to see this note that it is
extremely unlikely that the base risk model will
have a factor with exposure to only one asset. The
same argument applies to long-only constraints,
turnover constraints, factor exposure constraints
derived from secondary risk models, etc.

Having established the vital role of implied alpha
in determining the optimal holdings, we now
proceed to solution techniques to FAP in a con-
strained setting. We limit our discussion to the
augmenting factor y = 1

‖α̃⊥‖ α̃⊥; the analysis of
other factors introduced in the previous section is
more complicated and goes beyond the scope of
this paper. We also assume that the volatility ν of
y is prespecified and fixed. Thus we need to solve
the following MVO problem,

maxh αTh − λ
2 (hTQh + ν(yTh)2)

s.t. Ah = b

y = 1
‖α̃⊥‖ α̃⊥.

(6)

Note that Equation (6) is an equilibrium prob-
lem since α̃ depends on the Lagrange multipliers,
which in turn are determined by the optimal-
ity conditions. An iterative approach to solving
Equation (6) involves starting with an initial
approximation of α̃, say α̃0, solving the approx-
imation of Equation (6) obtained by fixing α̃ to
α̃0, extracting the implied alpha of the resulting
problem, updating the approximation of α̃ and
repeating the entire process until it converges. As
intuitive as this iterative approach may seem, it
has two shortcomings. First, it is not immedi-
ately clear if the procedure converges. Second,
even if it does converge it may take an excessive
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number of iterations to do so. The proposition
that follows establishes an important property
of feasible solutions to Equation (6) which is
used subsequently to solve the equilibrium prob-
lem as a single non-iterative convex optimization
problem.

Proposition 8 If (h, y, α̃) is a feasible solution
to Equation (6) then 1

‖h⊥‖h⊥ = 1
‖α̃⊥‖ α̃⊥.

By Proposition 8 we get the following equivalent
formulation of Equation (6).

maxh αTh − λ
2 (hTQh + ν(‖h⊥‖)2)

s.t. Ah = b.
(7)

It can be easily shown that Equation (7) is a
convex optimization problem and hence can be
solved efficiently. We refer to Equation (7) as the
AAF approach to FAP in the rest of this paper.

6 Volatility calibration model

Until now we have assumed that ν is already pre-
specified or is chosen by the PM based on the
IC and systematic risk inherent in α̃⊥. In this
section, we discuss a simple model that can be
used for dynamic calibration of ν. Notably, the
emphasis of this section is not on determining
the best volatility model for ν. Instead, we want
to develop a model which is simple, intuitive,
implementable, and which can be used to attest
the theoretical results discussed earlier.

We used the following volatility model in our
experiments.

νt = ξνt−1 + (1 − ξ)r2
y. (8)

νt denotes the value of ν to be used in the tth
period; ry denotes the factor return of the aug-
menting factor y = 1

‖α̃⊥‖ α̃⊥ determined using the
augmented regression apparatus discussed in Sec-
tion 2; ξ is the standard parameter used associated
with Exponentially Weighted Moving Average

(EWMA) models such as Equation (8) (see Hull,
2009). In our experiments we choose ξ = 0.94; in
Section 7 we give empirical results to illustrate the
sensitivity of the optimal portfolios to the choice
of the ξ parameter.

As for the choice of the initial volatility ν0 of y,
there are two competing alternatives. First, we
can run daily augmented regressions prior to the
first date of rebalancing and use the variance esti-
mator which is to estimate � to determine ν0.
Alternatively, we can start with a fixed choice
of the initial estimate ν0, and let the exponential
weighing mechanism adjust the estimate based on
the factor returns determined using the augmented
regressions. We believe that the first option is
the best alternative, and comes close to build-
ing a custom risk model that uses regular factors
(X) and the augmenting factor y. However, it is
also more cumbersome to implement and requires
access to fairly sophisticated volatility estimators.
For the sake of simplicity, we chose the second
option and used an initial value of

√
ν0 = 30% in

our experiments. We illustrate the impact of using
different values of ν0 on the optimal portfolios in
the section on computational results.

7 Computational results

In this section, we emphasize three important
points. First, we give extensive empirical results
that corroborate the theoretical findings discussed
in the preceding sections. Second, we intro-
duce the notion of “frontier spreads” to capture
improvements in risk-adjusted returns that result
due to the application of augmented risk mod-
els. Subsequently, we study the impact of var-
ious strategic parameters (turnover limits, asset
bounds, etc.) on the frontier spreads, and also
seek to identify market regimes where using an
augmented risk model is most likely to yield
significant improvements. Finally, we present
computational results with a wide variety of alpha
models to attest the robustness of the proposed
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approach. Throughout this section we assume that
the AAF y = 1

‖α̃⊥‖ α̃⊥ is used as the augmenting
factor, and refer to the resulting methodology for
portfolio construction as the AAF approach.

We reran the backtests discussed in Section 2
using the augmented risk models. Figures 7 and 8
report the key results. As it is evident from
Figure 7, using the AAF approach completely
eliminates the bias in risk prediction yielding
unbiased ex-ante risk estimates (see Proposi-
tion 5). Furthermore, using the AAF approach
also improved the risk-adjusted returns thus illus-
trating the “Pushing Frontier" phenomenon (see
Proposition 7). For a given level of realized active
risk, the difference in annualized active returns
of portfolios generated using the AAF approach

and the BRM is referred to as the frontier spread.
Figure 9 shows the frontier spreads for various
levels of realized active risk.

Notably, the frontier spread curve has a humped
shape. In other words, the frontier spreads tend to
be compressed at very low and very high active
risk levels, and attain their maximum at an inter-
mediate level. At very low active risk levels, the
optimized portfolio is tightly tied to the bench-
mark thereby mitigating the adverse effects of
FAP, and hence the ability of the AAF approach
to produce significant improvements. At very
high active risk levels, auxiliary constraints such
as turnover constraint, asset bounds constraints,
etc., start to play a more dominant role rendering
a secondary status to the active risk constraint.
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Figure 7 Bias statistic (active risk): AAF versus BRM.
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Figure 8 Realized risk–return frontier.

Third Quarter 2015 Journal Of Investment Management

Not for distribution



74 Anureet Saxena and Robert A. Stubbs

 

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.0% 2.0% 3.0% 4.0% 5.0%

Fr
on

Ɵe
r S

pr
ea

d 

Realized AcƟve Risk 

FronƟer Spread

Figure 9 Frontier spreads.

Consequently, the risk model has a subdued effect
on the optimal holdings at high active risk levels
reducing the severity of FAP, and by extension,
the marginal improvements that result by appli-
cation of the AAF approach. To summarize, the
tightness or looseness of auxiliary constraints in
the strategy can have a significant impact on the
amount of improvement that can be garnered
by applying the AAF approach. We conducted
some additional experiments to understand this
phenomenon.

Figure 10 reports the frontier spread curve for
three levels of turnover limits. Note that frontier
spreads compress significantly when the turnover

limit is reduced to 8%; this is to be expected since
at very low levels of turnover budget, the active
risk constraint plays a diminished role in deter-
mining the optimal portfolio holdings, thereby
reducing the impact of FAP. Figure 11 reports
the same results when the asset bounds are varied
between 13%. Once again, using loose constraints
gives rise to maximum improvements that can be
obtained via the AAF approach.

Note that the primary foundation of the theoret-
ical results presented earlier is the unaccounted
systematic risk in the orthogonal component
of implied alpha which goes undetected dur-
ing the process of portfolio construction. Indeed
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Figure 10 Frontier spreads: Varying turnover budget.
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Figure 11 Frontier spreads: Varying asset bounds.

Proposition 2 shows that the improvement in
the utility function that result by application
of augmented risk models increases monotoni-
cally with the unaccounted systematic variance
of the orthogonal component. Next we present
empirical results to highlight this phenomenon.
Figure 12 reports the return differential between
portfolios generated using the AAF approach and
the BRM, computed over a rolling 24 months win-
dow; the portfolios were chosen so as to have a
realized active risk of 3%. For the sake of discus-
sion, we also report the volatility of factor returns
associated with 1

‖α̃⊥‖ α̃⊥, computed using a rolling
24 months window. Note that the two time series
shown in Figure 12 are highly correlated with

each other; in fact, over the time period depicted
in the figure the correlation between these two
time series was 84%. Figure 13 reports the same
information using a scatter plot. As evident from
these figures, the AAF approach tends to pro-
duce maximum improvements in periods when
the unaccounted systematic risk associated with
α̃⊥ is at its highest level.

Next we move our attention to the volatility cali-
bration model that is used to determine ν. Recall
that the mentioned model has two key parameters,
namely, ξ and the initial variance estimate ν0. In
all of the experiments discussed until now, we
used ξ = 0.94 and ν0 = 0.09; next we examine

20%

30%

40%

50%

60%

70%

-6%

-4%

-2%

0%

2%

4%

6%

Fe
b-

01
M

ay
-0

1
Au

g-
01

N
ov

-0
1

Fe
b-

02
M

ay
-0

2
Au

g-
02

N
ov

-0
2

Fe
b-

03
M

ay
-0

3
Au

g-
03

N
ov

-0
3

Fe
b-

04
M

ay
-0

4
Au

g-
04

N
ov

-0
4

Fe
b-

05
M

ay
-0

5
Au

g-
05

N
ov

-0
5

Fe
b-

06
M

ay
-0

6
Au

g-
06

N
ov

-0
6

Fe
b-

07
M

ay
-0

7
Au

g-
07

N
ov

-0
7

Fe
b-

08
M

ay
-0

8
Au

g-
08

N
ov

-0
8

Fe
b-

09

Latent VolƟlity (Im
plied Alpha) 

Pe
rf

or
m

an
ce

 D
iff

er
en

Ɵa
l 

Performance DifferenƟal Latent VolaƟlity

Figure 12 Performance differential between portfolios generated using the AAF approach and BRM.
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Figure 13 Performance differential between portfolios generated using the AAF approach and BRM (scatter
plot).

the impact of changing these parameters on the
resulting optimal portfolios. We refer to

√
ν as

the volatility of the AAF.

Figure 14 depicts the evolution of the volatil-
ity of AAF through time for various choice of
the initial volatility. As it is evident from the
figure, volatilities of the AAF computed using
different initial choices soon converge to the same
time series by virtue of exponentially decaying
impact of ν0 in an EWMA model. To further
understand the impact of the choice of ν0, we
reran the backtests for various values of ν0; Fig-
ures 15 and 16 report the key results. For each
choice of ν0, we chose a point on the realized

risk–return frontier that had a realized active risk
of 3%, and report the statistics associated with
the corresponding portfolio. Figure 15 reports
the bias statistic for portfolios generated using
the AAF approach for values of

√
ν0 chosen

from {10%, 20%, . . . , 100%}. As evident from
the figure, regardless of the choice of the initial
volatility estimate, the AAF approach produced
unbiased risk estimates. Figure 16 reports the real-
ized IR for the same set of portfolios; for the sake
of comparison we also report the IR of optimal
portfolios generated using the BRM. The AAF
approach produces significant improvements in
IR regardless of the initial choice of

√
ν0. Notably,

the realized IR increases monotonically with the
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Figure 15 Bias statistics of portfolios generated using the AAF approach using different choices of initial
volatility estimate.
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Figure 16 Realized IR of portfolios generated using the AAF approach using different choices of initial
volatility estimate.

initial volatility estimate ν0. We believe that this
is the result of low or possibly negative IC of
the orthogonal component as compared to the
spanned component. A detailed analysis of this
phenomenon goes beyond the scope of this paper.
Next we move our focus to the ξ parameter.

Similar to the previous experiment, we reran the
backtests for various choices of the ξ parameter.
Figure 17 reports the movement of the frontier
spread curve for various choices of ξ parameter.
Note that using a value of ξ in [0.8, 0.99] interval
yields portfolios that have similar characteristics.
However, using a value of ξ ≤ 0.7 significantly
compresses the frontier spreads especially at

higher active risk levels. Essentially, using a small
value of ξ significantly increases the weight that is
assigned to the most recent observation, thereby
increasing the estimation error in the volatility
calibration model, thereby adversely affecting the
quality of the augmented risk model.

We conclude this section by reporting computa-
tional results using a larger class of alpha models;
all of these alpha models were constructed using
the constituent factors in the USER model (see
Guerard et al., 2012b); Table 1 reports the key
results. The first four alpha models were obtained
by taking equal weighted combination of a valu-
ation factor (B/P, E/P, C/P, and S/P) in the USER
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Figure 17 Impact of modifying the ξ parameter in the EWMA volatility model on frontier spreads.

model and the medium-term momentum (MTM)
factor in the fundamental BRM used in Sec-
tion 2. The next four alpha models used the same
valuation factors but employed the momentum
factors (RBP, REP, RCP, and RSP) in the USER
model in lieu of the MTM factor. The last four
risk models were obtained by adding an addi-
tional factor (CTEF) along with the valuation and
momentum factors. The results are reported for
portfolios that have a realized active risk of 3%.

Table 1 Computational results to illustrate robust-
ness of the AAF methodology.

Bias statistic

Alpha model BRM AAF Frontier spread

BP + MTM 1.27 1.00 0.75%
EP + MTM 1.18 1.00 −0.02%
CP + MTM 1.10 0.93 0.31%
SP + MTM 1.20 0.96 0.64%
BP + RBP 1.61 1.22 0.49%
EP + REP 1.11 0.90 0.46%
CP + RCP 1.43 1.05 0.19%
SP + RSP 1.21 0.91 −0.01%
BP + RBP + CTEF 1.52 1.18 0.37%
EP + REP + CTEF 1.17 0.91 0.10%
CP + RCP + CTEF 1.33 1.02 0.18%
SP + RSP + CTEF 1.29 0.96 −0.01%

The AAF approach produced unbiased risk esti-
mates for 11 out of 12 models; the 95% confidence
interval for the bias statistics associated with this
backtest is (0.87, 1.13). The only exception is
the BP + RBP alpha model wherein the risk esti-
mates produced using the AAF approach have a
small downward bias; even in this case, the bias
in risk prediction is reduced significantly from
1.61 to 1.22. Furthermore, the AAF approach
produced positive frontier spreads, i.e., improve-
ments in risk adjusted returns for 9 out of 12
cases; the worst frontier spread in the remaining
three cases was −0.02%. Overall these results
confirm the robustness of the AAF approach,
and provide strong empirical evidence to support
the theoretical results presented in the previous
sections.

8 Conclusion

The MVO approach to portfolio construction has
a history spanning more than six decades. Despite
coming under criticism from both practitioners
and academics, it has survived the test of time and
has become an industry standard for quantitative
approaches to equity portfolio management. Nev-
ertheless, the ambitious goal of constructing a
truly optimal portfolio, as originally envisaged
by Markowitz, remains a daunting challenge pri-
marily due to the disparity between the ex-ante
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and ex-post characteristics of optimized portfo-
lios. In this paper we set out to bridge this gap
by focusing on specification error, i.e., existence
of systematic risk factors which are missing from
the risk model despite having significant overlap
with the optimized portfolios.

We argued that exposure to such factors cre-
ates unintended and undesirable systematic bets
which eventually compromise the efficiency of
MVO portfolios. Based on a detailed analytical
investigation, we demonstrated the usefulness of
augmented risk models in addressing this issue.
Our results indicate that augmenting the base
risk model with an appropriate augmenting fac-
tor not only remedies the risk underestimation
problem but also improves risk-adjusted returns.
We presented extensive computational results to
corroborate our findings.

Among other things, these results suggest strong
synergistic advantages of integrating alpha and
risk research processes. In other words, we need
to abandon the “one-size-fits-all” approach to risk
management and take a more nuanced approach
that is sensitive to the specific requirements of a
PM. Ultimately, the primary responsibility of a
risk model is to capture all undiversifiable (i.e.,
systematic) sources of risk that are relevant to
a given investment process. A risk model that
is constructed in a manner which is agnostic to
the very factors that the PM is betting on, cannot
be expected to accomplish that goal. We believe
that augmented risk models partly accomplish
this goal, and should act as precursor to fully
customized risk models that shed the artificial bar-
rier between alpha and risk research, and take a
holistic view of the investment process.

Notes

1 GICS is a registered trademark of McGraw-Hill and
MSCI Inc. Russell 3000 is a registered trademark of
Russell Investments.

2 We used Axioma’s medium-horizon fundamental risk
model (US2AxiomaMH) as the choice of base risk model
(BRM).

3 Since the cross-sectional factor exposures of different
factors can have varying norms, we normalize the factors
so as to have a l2-norm of 1.0, and modify the factor vari-
ances accordingly. In other words we scale each factor f

so as to satisfy ‖f‖ = 1.0.
4 We limit our discussion to cross-sectional risk models.

The extension of these results to risk models constructed
using alternative methodologies (for instance, time-
series regressions) is technical and goes beyond the scope
of this paper.

5 Here, we used Axioma’s medium-horizon statistical risk
model (US2AxiomaMH-S) as our choice of statistical
model.

6 We assume that the true risk model gives the realized risk
of the portfolio; in other words, the realized risk is mea-
sured over a sufficiently long time horizon to eliminate
the effects of estimation error.
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