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AUGMENTED RISK MODELS TO MITIGATE FACTOR
ALIGNMENT PROBLEMS

Anureet Saxena∗ and Robert A. Stubbs†

Construction of optimized portfolios entails a complex interaction between three key enti-
ties, namely, the risk factors, the alpha factors and the constraints. The problems that
arise due to mutual misalignment between these three entities are collectively referred
to as Factor Alignment Problems (FAP). Examples of FAP include risk underestimation
of optimized portfolios, undesirable exposures to factors with hidden and unaccounted
systematic risk, consistent failure in achieving ex-ante performance targets, and inability
to harvest high quality alphas into above-average IR. In this paper, we give a detailed
analysis of FAP and discuss solution approaches based on augmenting the user risk model
with a single additional factor y. For the case of unconstrained mean–variance optimiza-
tion (MVO) problems, we develop a generic analytical framework to analyze the ex-post
utility function of the corresponding optimal portfolios, derive a closed-form expression
of the optimal factor volatility value and compare the solutions for various choices of y

culminating with a closed-form expression for the optimal choice of y. Augmented risk
models not only correct for risk underestimation bias of optimal portfolios but also push
the ex-post efficient frontier upward thereby empowering a portfolio manager (PM) to
access portfolios that lie above the traditional risk–return frontier. We corroborate our
theoretical results by extensive computational experiments, and discuss market conditions
under which augmented risk models are likely to be most beneficial.

1 Introduction

Factor models play an integral role in quantitative
equity portfolio management. Their applications
extend to almost every aspect of quantitative
investment methodology including construction
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of alpha models, risk models, portfolio con-
struction, risk decomposition, and performance
attribution. Given their pervasive presence in
the field and the natural trend toward specializa-
tion, it comes as no surprise that different groups
of researchers are often involved in developing
factor models for each one of the aforementioned
applications.

For instance, a team of quantitative portfolio man-
agers (PM) can develop an in-house model for
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alpha generation, and procure a factor model for
the purposes of risk management from a third-
party risk model vendor. Subsequently, they can
combine the two models within the framework of
Markowitz mean–variance optimization (MVO)
framework to construct optimal portfolios. A
completely different factor model can then be
used for the purposes of performance attribution
to identify the key drivers and detractors of per-
formance. Notably, the choice of factors in each
one of these factor models need not be identical,
thereby introducing incongruity in the portfolio
management process. To further complicate the
matters, the constraints in the quantitative strat-
egy can introduce additional systematic risk expo-
sures that are not captured by the risk model. The
problems that arise due to the interaction between
the alpha model, the risk model, and constraints in
an MVO framework are collectively referred to as
Factor Alignment Problems (FAP). Detailed the-
oretical investigation of FAP leading to a solution
methodology in the form of augmented risk mod-
els constitute the emphasis of this paper. Next we
give a brief survey of existing research on FAP,
and highlight our key contributions.

The primary purpose of portfolio optimization
is to create a portfolio having an optimal risk–
return tradeoff. If a portion of systematic risk
exposure of the portfolio is inadequately cap-
tured by the risk model then the resulting portfolio
cannot be expected to be optimal ex-post, its ex-
ante optimality notwithstanding. In other words,
FAP symbolize the difficulties that a PM faces
in ensuring the ex-post optimality of a portfo-
lio that is deemed to be optimal ex-ante in the
MVO framework. Examples of FAP include risk
underestimation of optimized portfolios, unde-
sirable exposures to factors with hidden and
unaccounted systematic risk, consistent failure
in achieving ex-ante performance targets, and
inability to harvest high quality alphas into above-
average IR.

Several authors have examined FAP recently and
have proposed various solution techniques. Sax-
ena and Stubbs (2013) conducted an empirical
case study to understand the risk underestima-
tion problem, a prominent symptom of FAP. The
authors used real-world data and a battery of
backtests to demonstrate the perverse and perva-
sive nature of FAP. They demonstrated that all
optimized portfolios share a common property,
namely, they have exposure to certain kinds of
latent systematic risk factors that are uncorrelated
with factors of the risk model that was used to gen-
erate them. Ceria et al. (2012) examine potential
sources of the mentioned systematic risk factors
and suggest that proprietary definitions of cer-
tain style (B/P, E/P, etc.) and technical factors can
introduce them. Lee and Stefek (2008) illustrate a
similar idea by using two different definitions of a
momentum factor to define alpha and risk factors,
and argue that the optimizer is likely to load up
on the difference between the two thereby taking
unintended bets. Saxena and Stubbs (2012) dis-
cuss a detailed empirical case study on FAP using
the USER model (see Guerard et al., 2012a);
among other things, they quantify the portion of
unaccounted systematic risk that can be attributed
to the constituent factors of the USER model and
constraints present in the strategy. Unlike previ-
ous studies which have investigated FAP from
an empirical standpoint, we pursue a theoreti-
cal exploration of this topic. We go back to the
roots of mean–variance optimization, and demon-
strate analytically the tendency of the optimizer
to adversely exploit inconsistencies between the
alpha and risk models, thereby compromising the
efficiency of the resulting portfolios. Our analy-
sis not only yields diagnostic tools to identify the
presence of FAP, but also provides a natural rem-
edy to FAP in the form of augmented risk models.
The rest of this paper is organized as follows.

Section 2 discusses a prototypical quantitative
strategy with the aim of identifying some of
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the common symptoms of FAP, such as the risk
underestimation problem, and undesirable and
unintended exposure to systematic risk factors
which are not captured by the risk model. The
aim of this section is to provide a simple but
comprehensive practical example which can be
used to put the theoretical results presented in
the later part of the paper in context. We return
to the example discussed in Section 2 again in
Section 7 wherein we show how our proposed
methodology address FAP, and improves risk-
adjusted returns. Section 3 lays out the theoretical
model which is used in the rest of the paper. We
discuss the assumptions we make in our analytical
derivations, and provide theoretical and empirical
justifications to them. Among other things, we
introduce the notion of an augmented risk model
which is used throughout the paper to remedy
FAP. Given an arbitrary asset–asset covariance
matrix Q, and a risk factor y, an augmented
risk model is defined by the covariance matrix
Qy = Q + νyyT. In other words, if Q was
derived from a factor model, Qy is derived from
an enhanced factor model that has all the origi-
nal factors, and an additional augmenting factor
y which is assumed to be uncorrelated with the
original suite of risk factors.

In Section 4 we focus on the unconstrained MVO
model, and develop a generic analytical frame-
work to analyze the ex-post utility function of the
corresponding optimal portfolios, derive a closed-
form expression of the optimal factor volatility
and compare the solutions for various choices
of y culminating with a closed-form expression
for the optimal choice of y. Among other things,
we show that using an augmented risk model
with an appropriately chosen volatility param-
eter ν not only solves the risk underestimation
problem but also improves the ex-post utility
function. The key result in this paper, referred
to as the “Pushing Frontier Theorem” shows that
using an augmented risk model shifts the ex-post

efficient frontier upward, thereby allowing the
PM to access portfolios that are not attainable
using the traditional MVO approach. In Sec-
tion 5, we extend these results to a constrained
MVO model. We employ the concept of implied
alpha to allow us to make a smooth transition
from unconstrained MVO to its constrained coun-
terpart. Recall that implied alpha is obtained
by tilting the alpha in the direction of binding
constraints, and acts as the de facto alpha for
constrained MVO models.

Application of augmented risk models requires
two key parameters, namely, the choice of an
augmenting factor y and an estimate of its volatil-
ity ν. In Section 6, we discuss an exponentially
weighted moving average (EWMA) volatility
model to calibrate the volatility of augmenting
factors. The emphasis in this section is on simplic-
ity and practicality of the proposed approach, and
we discuss a model that meets both of these crite-
ria. Section 7 has a threefold emphasis. First, we
give extensive empirical results that corroborate
the theoretical findings discussed in the preced-
ing sections. Second, we introduce the notion
of “frontier spreads” to capture improvements in
risk-adjusted returns that result due to the applica-
tion of augmented risk models. Subsequently, we
study the impact of various strategic parameters
(turnover limits, asset bounds, etc.) on the frontier
spreads, and also seek to identify market regimes
where using an augmented risk model is most
likely to yield significant improvements. Finally,
we present computational results with a wide vari-
ety of alpha models to attest the robustness of the
proposed approach. Section 8 concludes the paper
with some closing remarks.

2 A practical active strategy

The focus of this section is twofold. First, we want
to use a very simple value momentum strategy
to illustrate a classic symptom of FAP, namely,
the risk underestimation problem. Second, we
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show how the risk underestimation problem can
be traced to certain hidden systematic risk factors
that are not captured by the factor structure of the
base risk model (BRM). Among other things, this
sets the stage for the theoretical model discussed
in the following section which assumes the exis-
tence of systematic risk factors missing from the
BRM.

We used the following strategy in our experi-
ments.®,1

maximize Expected Return

s.t.

Fully invested long-only portfolio

Active GICS® sector exposure

constraint (±20%)

Active GICS industry exposure

constraint (±10%)

Active asset bounds constraint

(±2%)

Turnover (two-way) constraint

(16%)

Active Risk constraint (σ%)

Benchmark = Russell® 3000.

We used a fundamental risk model as our
BRM in defining the active risk constraint.2 The
expected returns were derived using an equal
weighted combination of the BP variable in the
USER model (Guerard et al., 2012b) and the

medium-term momentum factor in the BRM. We
ran monthly backtests based on the above strategy
in the 1999–2009 time period for various values
of σ chosen from {1.0%, 1.1%, . . . , 5.0%}.
We use the notion of the bias statistic to identify
statistically significant biases in risk prediction.
If the ex-ante risk prediction is unbiased, then the
bias statistic should be close to 1.0 (see Saxena
and Stubbs, 2013 for more details). A bias statis-
tic value which is significantly above (below)
1.0 indicates downward (upward) biases in risk
prediction. Figure 1 reports the bias statistics
of the portfolios for various risk target levels.
Clearly, the bias statistics are significantly above
the 95% confidence interval, thereby confirming
the statistical significance of the downward bias in
predicted risk estimates. We next focus on opti-
mal portfolios that were generated when a risk
target of 3.0% was employed.

At σ = 3.0%, the optimal portfolios had real-
ized active risk of 3.81%. The bias statistic for
these portfolios was 1.27 which clearly lies out-
side the 95% confidence interval [0.87, 1.13].
Figure 2 further corroborates this phenomenon
by showing the time series of realized risk of
the optimal portfolios computed using 24 period
realized returns on a rolling horizon basis; we
also show the predicted risk of the portfolios
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Figure 1 Bias statistic (active risk).
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Figure 2 Time series of realized (24-period rolling) and predicted risk of optimal portfolios constructed using
our BRM.

for the sake of comparison. While the degree
of under-prediction might have varied, the real-
ized risk was consistently above the predicted
risk in most of the periods. It is tempting to
believe that the risk models used in construc-
tion of the optimized portfolios were themselves
biased, and the risk underestimation problem is
simply an artifact of the bias in the BRM. Sax-
ena and Stubbs (2013) examined this issue and
demonstrated that the base risk model, in fact,
produces unbiased risk estimates for random port-
folios. Consequently, the bias depicted in Figure 1
is peculiar to optimized portfolios.

We introduce two additional concepts to assist us
in tracing the sources of the risk underestimation
problem. Let X denote the n×m exposure matrix
associated with the BRM; n denote the number of
assets; and m denote the number of factors in the
BRM. Given an arbitrary factor α, consider the
following linear regression model that regresses
α against factors in the base risk model,

α = Xu + α⊥;
the residual α⊥ in the above regression model
is referred to as the orthogonal component of α,
whereas αX = Xu is referred to as the spanned
component of alpha. Mathematically,

αX = X(XTX)−1XTα; α⊥ = α − αX.

By virtue of being uncorrelated with all the
factors included in the BRM, α⊥ has no sys-
tematic risk exposure with respect to the BRM;
in other words, the BRM assumes that α⊥ has
only idiosyncratic risk. This assumption can be
problematic if certain systematic risk factors are
missing from the BRM and α⊥ has overlap with
some of the missing systematic risk factors. As
we will soon discover, this indeed turns out to be
the case, thus providing a key insight into the risk
underestimation problem.

Next we introduce the notion of augmented
regressions which can be used to determine if
the orthogonal component of a given factor has
overlap with systematic risk factors missing from
the BRM. Consider a linear regression model that
regresses asset returns against factors in the BRM,
represented by the matrix X, and the normalized
orthogonal component y = 1

‖α⊥‖α⊥ of α. If α⊥
was truly idiosyncratic in nature then the factor
returns associated with y, denote by fy, in the
above regression model should not be statistically
significant. Alternatively, if fy is indeed statisti-
cally significant and has nontrivial volatility then
we can be assured that α⊥ has overlap with sys-
tematic risk factors missing from the base risk
model.
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Figure 3 Time series of t-statistics (absolute values) associated with the orthogonal component.

Figure 3 shows the time series of (absolute)
t-statistics associated with the orthogonal com-
ponent of alpha (α) and implied alpha (α̃) in
the corresponding augmented regression model;
α⊥ (α̃⊥) was found to be statistically significant
(90% cf) in 40% (20%) of the periods. Given that
a median factor in our BRM is statistically sig-
nificant in about 20–30% of the periods, these
statistics imply that α⊥ and α̃⊥ are as significant
as half of the factors in the BRM. Figure 4 reports
the annualized volatility of factor returns associ-
ated with α⊥ and α̃⊥ computed using a rolling
24-period window. As evident from the chart,
not only are α⊥ and α̃⊥ statistically significant,

but their factor returns also exhibit significant
volatility. To put these numbers in perspective,
note that a median normalized3 factor in the BRM
has annualized volatility of roughly 30%.

All of these results indicate that the orthogonal
component of α and α̃ does carry a significant
amount of systematic risk which is not accounted
for during the process of portfolio construc-
tion. The section that follows builds on these
observations; specifically we propose a theoret-
ical model that explicitly accounts for systematic
risk factors missing from the BRM, and use it to
assess the marginal cost of FAP.
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Figure 4 Time series of realized systematic risk of the orthogonal component computed using a rolling
24-period window.
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