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S U RV EY S, T E C H N O L O GY A N D C R O S S OV E R S

This section provides surveys of the literature in investment management or short papers exemplify-
ing advances in finance that arise from the confluence with other fields. This section acknowledges
current trends in technology, and the cross-disciplinary nature of the investment management
business, while directing the reader to interesting and important recent work.

BAYESIAN MODELING IN FINANCE
Xiaojing Donga and Carrie H. Panb

The Bayesian statistical method provides an alternative approach to study some of the
classical problems in finance. In the existing finance literature, research that uses Bayesian
econometrics is primarily in the area of asset pricing. Bayesian applications in corporate
finance have been rather limited, despite its great potential as a viable alternative to
address some challenging problems in corporate finance that are difficult to solve by the
traditional approach. Bayesian estimation techniques, the Markov Chain Monte Carlo
(MCMC) methods in particular, are very conductive to estimating nonlinear models with
high dimensional integrals in the likelihood or models with a hierarchical structure. In
this paper, we outline the basic concepts of Bayesian modeling, describe most commonly
used estimation techniques, and review its applications in the existing finance literature.

1 Introduction

Most quantitative methods and statistical anal-
ysis in finance take the classical (frequentist)
approach, which essentially considers the prob-
ability of an event the limit of its long-run
frequency. Data are assumed to be a repeat-
able random sample from the underlying popu-
lation that has a distribution with unknown but
fixed parameters. Inference is based on unbiased
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estimators, hypothesis testing and confidence
intervals, and often relies on large-sample
approximations. In reality, however, financial
data violate these assumptions most of the time.
For example, rare events such as financial crises
do not repeat frequently enough, so large samples
of time series data are not available. Moreover,
financial variables tend to behave differently dur-
ing crisis. Stock market volatility increases during
a crisis period, as do the correlations cross differ-
ent stock markets (see, for example, Bekaert et al.,
2005). In this case, the underlying parameters
might be random variables themselves.
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Some of these strong assumptions are not impor-
tant, nor relevant in a Bayesian framework.
Bayesian statistics considers data fixed and
parameters uncertain. In the Bayesian framework,
probability distributions are subject to change
as new information (from data) becomes avail-
able. In this paper, we outline the basic concepts
of Bayesian modeling, describe most commonly
used estimation techniques, and review some of
its applications in the existing finance literature.

2 Bayes’ theorem and Bayesian
model analysis

2.1 Bayes’ theorem

Bayes’ theorem was first discovered in the 1740s
by the English Reverend Thomas Bayes, when
he was trying to learn how to infer causes from
effects. It was eventually published after his death
(Bayes, 1763), but made little impact. Over a
decade later, in 1774 Pierre-Simon Laplace, a
French mathematician, independently rediscov-
ered the theorem and published it (Laplace, 1774).
Laplace continued to use it, extended it, and made
it more popularly known. Bayes theorem is simple
and the idea is the following: suppose we denote E

as the event or what actually happened, and denote
Ci as the ith possible cause that could lead to the
event E. The Bayes’ theorem states that given
the event has happened, the probability of each
possible cause (Ci) is proportional to the prod-
uct of two probabilities, Equation (1) P(E|Ci),
the conditional probability of E given cause Ci;
and Equation (2) P(Ci), the probability of cause
i without knowing the event:

P(Ci|E) = P(E | Ci)P(Ci)∑
jP(E | Cj)P(Cj)

. (1)

Traditionally, interest was in the probability of
an event happening, given the causes. But Bayes
and Laplace were interested in making inferences
about the cause, given the observed event. The
Bayes’ probability is therefore also referred to

as a “reverse probability”. Although simple, this
theorem made a profound impact on the way
statistical inferences are conducted. This can be
demonstrated from Bayesian model analysis and
its deviations from the classical approach.

2.2 Bayesian model analysis

In the context of modeling analysis, the objective
is to obtain statistical inferences regarding model
parameters for given data. Following conven-
tional notation, we use θ to denote the parameters
in the model and y to denote the data. According
to Bayes Theorem, we can write

p(θ | y) = p(y | θ)p(θ)

p(y)
. (2)

In this equation, p(θ) denotes the prior distribu-
tion of the parameters, representing the analyst’s
knowledge about the parameters before seeing
the data. p(y|θ) denotes the distribution of the
data conditional on the parameters, the likelihood
function. p(y) denotes the marginal distribution
of the data, and can be obtained by integrating
the likelihood function over all possible θ, that
is p(y) = ∫

p(y|θ)df(θ). This is the continuous
version of the denominator in Equation (1). Since
p(y) does not involve θ, we can drop it from the
above equation when inferring parameter θ for
given data y and rewrite the equation as:

p(θ|y) ∝ p(y|θ)p(θ) (3)

p(θ|y) on the left-hand side represents the
(inferred) distribution of the parameters given the
data, and it is called the posterior distribution of
the parameters. The goal in Bayesian model anal-
ysis is to obtain the posterior distribution of the
model parameters conditional on the data. Equa-
tion (3) represents the basic idea of the Bayes’
Theorem, that is

Prior belief (Prior) + Data (Likelihood) →
Updated belief (Posterior)
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Therefore, the posterior distribution for parame-
ters θ combines two sources of information: the
likelihood function that captures information in
the data; and the prior distribution that represents
additional information available to the analyst.

In setting up the prior distribution, no informa-
tion from the data is required. The information
in the data is incorporated via the likelihood
function. According to the likelihood princi-
ple, the likelihood function contains all rel-
evant information from the data (Berger and
Wolpert, 1984). Bayesian modeling analysis is a
likelihood-based approach, which has advantages
over a nonlikelihood-based method, as discussed
by Kim et al. (2007). In addition, it has been
shown that inference based on the likelihood
approach reaches the Cramér–Rao lower bound,
and is asymptotically efficient (Greene, 2008,
p. 493).

There are two important points to note here. First,
inferences of the parameters p(θ|y) are condi-
tional on the data, which are different from clas-
sical statistical inference. The classical approach
is based on sampling theory, where the data used
in estimating the model are considered to be a
random representation of the “population”, which
can be only achieved when the sample size is infi-
nite. The statistical inferences obtained from such
data tell us something about the population. In
such statistical analysis, we care about the prop-
erties of statistical inferences when the sample
size is infinite, which is referred to as the asymp-
totic property. In Bayesian approach, inference
is conditional on the data, so there are no such
concepts as “sampling” and “population”. As a
result, even when the size of the data is small,
a Bayesian approach is still applicable. Second,
in the classical approach, we obtain point esti-
mates of the model parameters, with asymptotic
properties. When using these model estimates for
forecasting, it is sometimes tedious to obtain the

confidence intervals of the predicted dependent
variables. In the Bayesian approach, however,
given that the model result is the distribution of
the model parameters conditional on the data,
we can simulate the parameters from the poste-
rior distributions, plug in the model, and obtain
the simulated distribution of the dependent vari-
able. This approach has proved to be able to solve
interesting yet important problems that might be
difficult using a classical approach (Rossi et al.,
1996; Dong, 2007). In this case, the distribu-
tion of the dependent variable can be achieved
through Monte Carlo simulation. It is not nec-
essary to derive the asymptotic properties of the
predicted variables, using some approximation
method, such as the Delta method (Cameron and
Trivedi, 2005, p. 231), as may be required by a
classical approach.

Furthermore, the incorporation of the prior into
Bayesian inference diverges sharply from the
classical statistical inference.1 In Bayesian model
analysis, getting prior knowledge of the model
parameters is an important step. This is because
all additional knowledge regarding the parameters
other than the data can be incorporated into the
modeling analysis through the prior. In Bayesian
modeling, prior belief is represented by the prior
distribution of the model parameters, which could
be formulated in many different ways. The flex-
ibility of prior distributions provides the analyst
with a formal way to incorporate any informa-
tion, in addition to the data and model, into the
process of parameter inferences. This informa-
tion could be obtained from a different dataset
(Dong, 2007; Shin et al., 2012), from prior knowl-
edge (Allenby et al., 1995), or from economic
theory (Montgomery and Rossi, 1999). Some-
times prior information about the parameters is
too limited for the analyst to specify the prior
distribution. In this case, a noninformative prior
in the form of a diffuse distribution could be
deployed. It is then necessary to ensure that such
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a distribution assumption is appropriate in the
modeling context, and the analyst needs to under-
stand its impact on the posterior distribution of the
parameters (see for example Jacquier et al., 2004).
It could also be obtained from another model in a
hierarchical structure.

2.3 Hierarchical Bayesian models

To illustrate the structure of Hierarchical
Bayesian models, consider the following regres-
sion model estimated with a panel dataset, where
i indexes for firm and t for time. The setup of the
model is similar to a regular ordinary least squares
(OLS) model, where the error term εit is assumed
to be i.i.d. and follow a normal distribution
N(0, σ2). In contrast to the OLS method, the HB
model accounts for unobserved heterogeneity by
allowing each i have its own set of parameters βi.

yit = Xitβi + εit, where εit ∼ N(0, σ2) (4)

In this case, the prior distribution of each βi for all
i can be assumed to follow a normal2 distribution,
such as

βi ∼ N(β, �)

The values of the parameters in the prior distri-
bution, i.e., mean β̄ and covariance matrix �, are
hard to come by, so they are represented with dis-
tributions. These distributions form another layer
of prior distributions, which makes the model a
hierarchical model. These parameters, mean β

and covariance matrix �, are called hyperparam-
eters. As an example, we can assume that they are
independent, and the prior for β follows a normal
distribution:

β ∼ N(β0, A
−1)

The values of β0 and A−1 are specified by the
analyst, based on the knowledge of the analyst. If
no information is available, a diffuse prior could
be used. We can set β0 = 0, and A = 0.01 ∗ I,
where I is an identity matrix.

The prior for the covariance matrix � is assumed
to follow an Inverse–Wishart (IW) distribution,
with

� ∼ IW(n0, V0)

An IW distribution is the multidimensional
Inverse-Gamma (IG) distribution, and is speci-
fied with two parameters: the degree of freedom
n0 and the scale matrix V0. Denote p as the dimen-
sion of matrix V0. For the distribution to be valid,
the degree of freedom parameter n0 needs to sat-
isfy n0 > p − 1, and V0 needs to be positive
definite. The distribution has a conjugate prior,
and is commonly used as the distribution function
for the covariance matrix of a multivariate normal
distribution. In Bayesian estimation, the values of
n0 and V0 need to be specified. If a diffuse prior
is desired, n0 should be small, but also satisfy-
ing the condition n0 > p − 1. After choosing n0,
the analyst can specify the scale matrix V0 based
on the fact that the mean of the Inverse–Wishart
distribution is

V0

n0 − p − 1

For more discussion regarding the properties and
implementations of IW distribution, interested
readers are referred to a Bayesian text book, such
as Gelman et al. (1995), p. 474.

In this example, the goal of model estimation is to
obtain firm-level parameter estimates βi for all i.
Its prior distribution βi ∼ N(β, �) is the same for
all i. This normal distribution can be considered as
the population-level distribution across all i. This
population-level distribution is achieved based on
the inference of the firm-level estimates βi. In
most cases, each i may have only a limited number
of data points, which subjects the inference to var-
ious sources of noise. In the Bayesian inference,
the prior distribution βi ∼ N(β, �) is effectively
combined with the data concerning each firm i to
achieve the posterior distribution of βi for any
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particular i. In other words, this Hierarchical
Bayesian framework “borrows” information from
all other i’s to obtain the posterior inference about
a particular i.

As such, a Hierarchical Bayesian model provides
an effective way of obtaining individual-level
estimates. For example, tests of asset pricing
models usually take a portfolio-based approach
to reduce the errors-in-variables problems of esti-
mated betas (see e.g., Blume, 1970; Black et al.,
1972; Fama and MacBeth, 1973). However, many
recent studies point out the shortcomings of the
portfolio-based approach such as data snoop-
ing, test efficiency, or difficulty in selecting
the appropriate test portfolios (see e.g., Lo and
MacKinlay, 1990; Ahn et al., 2009; Ang et al.,
2010; Lewellen et al., 2010). Cederburg et al.
(2011) develop a Hierarchical Bayesian model
to test the Capital Asset Pricing Model (CAPM)
at the firm level. Their model has the following
structure:

γity = αiy + γmtyβiy + εity,

εity ∼ N(0, σ2
iy) (5)

αiy = Xiyδy + uiy, uiy ∼ N(0, σ2
αy) (6)

δy = δ + vy, vy ∼ MVN(0, V) (7)

Where γit denotes the excess return on stock i

in subperiod t over time period y, γmt denotes the
excess market return, andXiy is a matrix including
a constant and firm characteristics measured at the
beginning of period y. The unobserved firm-level
heterogeneity is addressed through firm-specific
parameters, αiy and βiy. The firm-specific αiy is
assumed to have a hierarchical structure. Each αiy

is modeled as a function of firm characteristics, as
shown in Equation (4). The dependence of αiy on
firm characteristics can also vary across different
time periods, as captured by δy. Cederburg et al.
(2011) examine nine CAPM anomalies, including

size, book-to-market, momentum, reversal, prof-
itability, asset growth, net stock issues, accruals,
and financial distress, over the period of 1963–
2008. Their results with firm-specific alphas
suggest that much of the evidence using the
portfolio-based approach against the CAPM is
overstated.

Others have estimated more complicated hierar-
chical models. For example, Greyserman et al.
(2006) estimate a hierarchical model for (µ, �)

in portfolio optimizations (Markowitz, 1952).
They compare the performance of portfolios
constructed weights estimated from a classical
mean–variance optimization model with no hier-
archical structure at all, a partial hierarchical
model in which µ has a hierarchical structure
(a shrinkage estimator for the mean), and a full
hierarchical model with hierarchical structures
for both µ and �. Greyserman et al. show
that portfolios constructed with the full hierar-
chical model outperform those constructed with
other models. Young and Lenk (1998) estimate
a hierarchical multifactor model in which the
alphas, betas, and variances are linear functions
of firm characteristics. They show that the use
of cross-sectional information in the Hierarchi-
cal Bayesian models leads to smaller estimation
errors of the factor model parameters at the
firm-level, and the improvement in estimation
accuracy further leads to improved portfolio
performance.

The fact that these hierarchical models have mul-
tiple levels provides a natural way of grouping
the parameters, which makes it directly applica-
ble to Gibbs sampling and other Markov Chain
Monte Carlo (MCMC) methods, which will be
discussed later. Before presenting the estimation
approaches using MCMC methods, we discuss
Conjugate Priors, another very important con-
cept in Bayesian model analysis in the next
section.
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2.4 Conjugate priors

In some case, a particular distribution assumption
on the priors could allow the analyst to conve-
niently obtain the posterior distribution of the
model parameters. Conjugate priors is one exam-
ple. When the posterior derived from a prior and
likelihood is in the same class of distribution as
the likelihood, the prior is called a conjugate prior.
When a conjugate prior exists, the distribution
function of the posterior is known, and the param-
eters in the posterior distributions can be derived
analytically.

Unfortunately, most likelihood functions do not
have a conjugate prior, except likelihood func-
tions in the exponential family of distributions.3

The exponential family consists of many com-
monly used distributions, especially those with
an exponential term in their probability distribu-
tion function (PDF). Such distributions include
Normal, Exponential, Gamma, Wishart, Bino-
mial, Bernoulli, Poisson, Negative Binomial,
Dirichlet, etc. However, not all of these distribu-
tions have standard conjugate priors (Consonni
and Veronese, 1992). In fact, Poisson likeli-
hood does not have a conjugate prior. But if
the parameter of a Poisson distribution follows a
Gamma distribution, it becomes a Negative Bino-
mial (or Poisson-Gamma) distribution, for which
conjugate priors exist.

When a conjugate prior exists for a distribution
in the exponential family, the product of the
prior and the likelihood is a multiplication of two
exponential terms, which can be rewritten as the
exponential of the sum of the two parameters
(one from the prior and the other from the like-
lihood). The sum then becomes the parameter of
the posterior distribution.

For example, consider a dataset with N obser-
vations x1, x2, . . . , xN , and assume that they are
generated from a normal distribution with known

variance σ2. We want to apply the Bayesian
approach to obtain estimates for the mean µ. The
likelihood function of the data conditional on the
unknown parameter µ and the known parameter
σ2 can be written as:

p(data|µ, σ2) ∝
N∏

i=1

exp

(
−1

2

(
xi − µ

σ

)2
)

We use the proportional operator ∝ here, as the
scale parameter (functions of π and σ2) is omitted
for simplification purposes. We use the conjugate
prior for the mean µ, that is µ ∼ N(µ0, σ

2
0), where

µ0 and σ2
0 are the mean and variance of the prior

distribution and their values are chosen by the
analyst. The PDF for the prior distribution is

p(µ) ∝ exp

(
−1

2

(
µ − µ0

σx

)2
)

The posterior distribution for µ conditional
on the data and the known parameter σ2,
p(µ|data, σ2), can be obtained through the multi-
plication of the two normal distribution functions,
that is

p(µ|data, σ2) ∝ exp

(
−1

2

(
µ − µ0

σ0

)2
)

×
N∏

i=1

exp

(
−1

2

(
xi − µ

σ

)2
)

Combining the two exponential functions, the
right-hand side becomes

exp

−1

2

(
µ − µ0

σ0

)2

− 1

2

(∑N
i=1(xi − µ)

σ

)2


= exp

(
−1

2

(
µ2

(
1

σ2
0

+ N

σ2

)

− 2µ

(
µ0

σ2
0

+
∑N

i=1 xi

σ2

))
+ C1

)
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= exp

(
−1

2

(
1

σ2
0

+ N

σ2

)

×

µ −

(
µ0

σ2
0

+
∑N

i=1 xi

σ2

)2

(
1
σ2

0
+ N

σ2

)
+ C2


In the above equations, C1 and C2 are
constants relative to µ. Comparing the last
equation with a Normal distribution PDF
exp (−1

2
1

var (µ − mean)2), we can obtain the
parameters of the posterior distribution for
p(µ|data, σ2) ∼ N(mean, var), where

var =
(

1

σ2
0

+ N

σ2

)−1

mean =
(

µ0

σ2
0

+
∑N

i=1 xi

σ2

)
× var

The existence of a conjugate prior allows the
analyst to arrive at the posterior distribution
analytically, as demonstrated above. When a con-
jugate prior does not exist, the distribution of
the posterior is unknown. One has to resort to
the MCMC method to simulate the posterior
distribution.

3 MCMC and data augmentation

The MCMC method provides a way to simu-
late from a distribution using a Markov Chain.
In Layman’s terms, a Markov Chain simulation
refers to a process of stochastically generating a
series of numbers, where the successive number
is generated probabilistically based only on the
preceding one and is not influenced by the path
it took to achieve the preceding quantity. One
important property for a Markov Chain is that
when the chain is long enough, the limiting quan-
tities will reach a stationary distribution.4 The idea
of MCMC is to create a Markov Chain so that

its stationary distribution is the posterior distri-
bution. Once the posterior distribution has been
simulated, the analyst can obtain any descriptive
statistics about the distribution. That includes but
is not limited to (1) mean of the posterior distri-
bution, which corresponds to the point estimate
in the frequentist approach; (2) standard devia-
tion, which corresponds to the standard errors in
the frequentist approach; and (3) confidence inter-
vals. In practice, it is achieved by generating a
really long Markov Chain, even after convergence
is attained. The simulated numbers at the begin-
ning, which is called the “burn-in” period, are
discarded. The analyst can then obtain descrip-
tive statistics from the many draws when the chain
converges after the burn-in period.

MCMC starts from an initial value, and at every
step the next step is defined based on the cur-
rent value and the transition probability function.
The key challenge in this process is therefore to
define the transition probabilities for the Markov
Chain, so that the chain will converge to the poste-
rior distribution. Two widely adopted approaches
are employed to achieve this goal, Gibbs sam-
pling and the Metropolis–Hastings (MH) algo-
rithm. Another important approach that is directly
related is the data augmentation approach, which
dramatically simplifies the estimation process in
many Bayesian model analyses. In the follow-
ing, we present the Gibbs sampling approach and
the Data augmentation technique, followed by a
discussion of the MH algorithm.

3.1 Gibbs sampling

In most modeling analysis, the posterior distribu-
tion of the model parameters is multidimensional.
Simulation from a multidimensional distribution
could be formidable, if possible at all. Gibbs
sampling provides an approach to attain the high
dimensional joint distribution through sequen-
tially simulating from a series of conditional
distributions. Gibbs sampling is named after the
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physicist Josiah W. Gibbs (1839–1903), known
for his major contributions to statistical physics.
This approach was developed by Geman and
Geman (1984), about eight decades after the
death of Gibbs. The concept of Gibbs sampling is
detailed in the following:

Denote θ as a vector containing all the model
parameters,

θ = {θ1, θ2, . . . , θg}
θi, i = 1, 2, . . . , g, could represent one parameter
or a set of parameters (vector). In some cases, the
model parameters are naturally grouped based on
the specifications of the model. For example, in
Hierarchical Bayesian models, some parameters
are individual-level parameters, whereas others
are at the population-level. As another example,
some studies control for endogeneity by simul-
taneously estimating multiple models (see, for
example, Yang et al., 2003; Dong et al., 2009).
The parameters associated with each model can
be put in the same group. When such a group-
ing is not well defined by the model, the analyst
is free to group the parameters as she wishes. If
too many groups are defined, it takes a long time
before all the parameters can be simulated once
in the Gibbs sampler, which will slow down the
estimation. However, if too few groups are cre-
ated and in each group there are a large number
of parameters, the estimation might still have to
face a high dimensional problem that the Gibbs
sampler was set to resolve. Once the groups were
defined balancing the tradeoffs, the Gibbs sampler
can be developed.

Let π(θ) denote the joint posterior distribution of
all the parameters, which is what the Bayesian
modeling analysis sets to achieve. According to
the Gibbs sampling approach, to obtain π(θ),
one can simulate each θi from the full condi-
tional distribution of θi, conditional on the rest
of parameters. That is,

Step 1: Simulate θ1 from the conditional distri-
bution f1(θ1|θ2, . . . , θg), get a value of
θ1, denoted as θt

1.
Step 2: Simulate θ2 from the conditional distribu-

tion f2(θ2|θt
1, θ3, . . . , θg). Note that the

conditional distribution is conditional on
the current value of θt

1 obtained from the
last step. From this step, we get θt

2.
Step 3: Simulate θ3 from the conditional dis-

tribution f3(θ3|θt
1, θ

t
2, . . . , θg) using the

current values of θt
1 and θt

2, and get the
new value θt

3.

Continue with the above steps, draw each θi con-
ditional on the current values of the rest, until the
chain reaches convergence.

To see how Gibbs sampling is applied, consider
again the model in Cederburg et al. (2011). The
model parameters that need to be estimated are
{αiy, βiy, σ

2
iy, δy, δ, σ

2
αy, V }. In this study, diffuse

priors are adopted. The prior for δ is assumed to
be multivariate normal with mean zero and really
large variances, δ ∼ MVN(0, 100I), where I rep-
resents the identity matrix. The prior for firm-level
betas βiy is assumed to follow a normal distri-
bution with a mean of one and a large variance,
βiy ∼ N(1, 10). In both cases the prior has a large
variance so that the prior mean would have little
impact on the posterior. The prior distributions
for {σ2

iy} and {σ2
αy} are specified as IG, and the

prior for V is assumed to be IW, which is the
multidimensional version of the IG distribution.
As discussed earlier, these are all conjugate pri-
ors for the model parameters. With these prior
distribution assumptions, Cederburg et al. use a
Gibbs sampler to draw from the full conditional
posterior distributions for all parameters:

Step 1: Draw αiy, βiy|σ2
iy, δy, σ

2
αy ∼ N() for each

stock i in each year y;
Step 2: Draw σ2

iy|αiy, βiy ∼ IG() for stock i in
each year y;
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Step 3: Draw δy|{αiy}, βiy, δ, V ∼ N() for each
year y;

Step 4: Drawσ2
αy|{αiy}, δy ∼ IG() for each yeary;

Step 5: Draw V |{δy} ∼ IW(); and
Step 6: Draw δ|δy ∼ N().

Each iteration of these six steps forms one draw
from the joint posterior distribution of all the
parameters. These steps are repeated until the
MCMC converges. The additional draws after
reaching the convergence are used to obtain the
descriptive statistics of the posterior distributions
of the model parameters.

3.2 Data augmentation

The Data Augmentation approach was developed
by Tanner and Wong (1987), and has been widely
adopted in solving Bayesian models. According
to Tanner and Wong (1987), the data augmenta-
tion method can be applied whenever augmented
data (a) are easier to be analyzed; and (b) make
the MCMC process easier to generate, given the
model parameters. In other words, it is widely
applicable, as long as it provides convenience in
generating the MCMC. The basic idea of data aug-
mentation is to facilitate the MCMC process by
simulating some additional random variables that
are not model parameters.

For example, Albert and Chib (1993) devel-
oped a Gibbs sampler with data augmentation to
facilitate the estimation of a Probit model. The
likelihood function of a Probit model involves
integration over a normal distribution, which does
not have a closed form solution. Therefore, it has
been the major obstacle to using a likelihood-
based approach (such as Bayesian inference) in
estimating a Probit model. The main difficulty in
the integration happens when trying to connect
the discrete values on the left-hand side with the
continuous ones on the right-hand side in a Probit
model. To break the deadlock, Albert and Chib

(1993) suggest augment the data by simulating
an additional continuous variable that connects
both sides of the model. For example, in a Binary
Probit model:

yi = Xiβ + εi, εi ∼ N(0, 1), i = 1, 2, . . . , P

yi =
{

1, if yi > 0

0, otherwise

In this model yi is latent, and not observed. In
estimating the model with data augmentation,
its value is augmented, which dramatically sim-
plifies the estimation process. In particular, the
Gibbs sampler is:

Step 1: Draw β conditional on the latent val-
ues y and the observed data X. This step is
similar to estimating a normal regression with
conjugate priors for the β. Denote the prior as
β ∼ N(β0, A

−1), the full conditional distribution
(the posterior distribution of β conditional on the
latent values yi) follows a normal distribution
with

µβ = (X′X + A)−1(X′y + Aβ0)


β = (X′X + A)−1

Step 2: Draw the latent values yi, i =
1, 2, . . . , P conditional on β and the observed
data X. P independent draws of yi are simu-
lated. Each draw is simulated from a truncated
normal distribution TN(Xiβ, 1). If Yi = 1, the
truncation is (0, ∞); otherwise, the truncation
is (−∞, 0).

Besides simplifying the modeling analysis, data
augmentation can also be useful when dealing
with a very common problem in finance-missing
data. Korteweg (2011) notes that even key vari-
ables such as total assets, capital expenditures,
and market leverage are missing in Compustat
at alarmingly high rates. Some analysts exclude
observations with missing data, others replace the
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missing data with some arbitrary values such as
sample median or industry median. Neither seems
to be an ideal solution. Dropping observations
with missing data throws away all the information
in other variables associated with these observa-
tions. Filling missing values with a point estimate
ignores the variation in the filled-in data. Data
augmentation offers a convenient way to address
this problem by treating the missing observations
as latent values (y∗) that are added to the estima-
tion. The joint distribution of the missing values
and the model parameters can be derived, which
demonstrates one of the convenient properties of
Bayesian inference, that is, data and parameters
are treated as the same. The joint distribution
of the parameters can be obtained by margining
out the parameters. All these steps are natural in
Bayesian estimation using MCMC.

Korteweg (2010) uses this technique to handle
missing corporate bond values in his study of the
net benefit of leverage. He models net benefit
of debt relative to total firm value as a func-
tion of firm characteristics, interactions of firm
characteristics and leverage, and interactions of
firm characteristics and squared leverage. His
model contains a firm value equation, a beta equa-
tion, one-factor return equations for equity and
debt, and an acceptance–rejection (AR)(1) equa-
tion for unlevered beta. To handle missing data
in bond returns for bonds that are traded infre-
quently, Korteweg treats missing values as addi-
tional model parameters. He finds that net benefits
of leverage accounts for as much as 5.5% of
firm value, and firms are on average underlevered
relative to the optimal capital structure.

3.3 Metropolis–Hastings algorithm

Gibbs sampling allows the analyst to decompose
a complicated high-dimensional problem into a
series of smaller models that are easier to solve.
The simpler models still need to be solved. If a
conjugate prior exists, the posterior distribution

can be derived analytically, and the Gibbs sampler
can fulfill the task. However, if a conjugate prior
does not exist, the estimation process becomes
difficult. In fact, besides higher requirements on
computational power, not being able to solve the
models without a conjugate prior was another
major hurdle that prevented Bayesian analysis
from being widely accepted until 200 years after
the Bayes theorem was discovered.

In 1953, a group of physicists from Los Almos
proposed a simulation method for calculating
integrations (Metropolis et al., 1953). Over a
decade later, this method was extended to more
general cases (Hastings, 1970), and is therefore
recognized as the MH algorithm. As one of the
MCMC approaches, the MH algorithm provides
a way to obtain transition probabilities so that the
chain will converge to the posterior distribution
of the model parameters.

In the MH algorithm, the transition probabilities
are unknown, so the approach allows the analyst
to use a proposal transition function, denoted as
q0. The Markov Chain can be simulated with a
starting value θ0 and the proposal transition func-
tion 0. Given that q0 is not the true transition
matrix that will converge to the posterior distribu-
tion as a stationary distribution, some adjustment
(correction) is necessary. The adjustment is to
decide the probability of accepting the proposed
value generated from the proposal transition func-
tion, denoted as θ̃t . The acceptance probability is
denoted as α, and is calculated as:

α = min

(
π(θ̃t)q(θt−1)

π(θt−1)q(θ̃t)
, 1

)
(8)

That is, with probability α the chain accepts the
proposed value and moves on with the chain θt =
θ̃t; and with probability 1 − α, the chain rejects
the proposed value and repeats the current value,
that is θt = θt−1.
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The MH algorithm is a very powerful approach
and widely applicable, as it does not require a
functional form of the parameter posterior dis-
tribution π(θ). The development of this method
helped fuel the wider acceptance of Bayesian
methods in estimation. In addition, given that
the calculation of the acceptance probability α

involves the ratio of π(θ) at two different θ val-
ues, the MH algorithm is still applicable even
when the posterior distribution is only known up
to a scale. This feature is especially attractive
to Bayesian analysis, as it dramatically simpli-
fies the calculation of the posterior distribution
π(θ). To understand this, recall that Equation (3)
shows that the posterior distribution is propor-
tional to the product of the prior and likelihood
function. In most cases of Bayesian modeling,
getting the scale parameter of the posterior distri-
bution is cumbersome. To achieve that, one needs
to calculate the integral of the unscaled posterior
distribution, which was obtained through a multi-
plication of two PDFs. The MH algorithm allows
the analyst to skip such a step, which makes it well
accepted and suitable to most Bayesian modeling
analysis.5

To better understand the MH algorithm, let’s com-
pare it with the AR sampling approach.6 The
concepts of these two approaches are quite sim-
ilar, in that a proposal distribution is required in
both approaches. After simulating a “proposal”,
the AR approach will reject the proposed value if
it is too big, while the MH will keep the proposed
value if “correction” is needed. Another main dif-
ference between these two approaches is that in
theAR approach, the ideal proposal distribution is
larger than or the same as the desired distribution
function on the support of the distribution, while
this is not necessary in the MH approach. In fact,
the MH algorithm does not put any restrictions
on the proposal function q0, nor any theoretical
guidance on what might make a good q0 in order
to result in good convergence. In practice, the

most commonly used proposal function is a nor-
mal distribution centered at the current value θt ,
and variance s2 chosen by the analyst. Such an
MH algorithm is also called a Random-Walk MH
algorithm, which is specified as follows.

Step 0: Start with θ0.
Step 1: Draw the proposal θ̃t ∼ N(θt−1, s2).

Step 2: Calculate the acceptance probability α by
evaluating Equation (4).

Step 3: Decide whether to accept the proposal.
With probability α, θt = θ̃t; and with
probability 1 − α, θt = θt−1.

One of the key parameters in this process is the
variance of the proposed normal distribution s2.
If the s2 is too big, many of the proposed values
will be rejected, and the chain will be moving too
slow. On the other hand, if it is too small, even
though most of the proposed values are accepted,
they may be very close to each other so that the
chain navigates the space too slowly to reach the
convergence. By adjusting the value of s2, one
can balance the trade-offs. A rule of thumb is that
an acceptance rate around 30% is a good number.

Bayesian estimation of time-varying volatility
models such as GARCH relies on MH algorithm
because the likelihood function in such a model
does not have a conjugate prior, and it is impossi-
ble to draw directly from the posterior distribution
of the parameters (see, for example, Chib and
Greenberg, 1994; Müller and Pole, 1998; Nakat-
suma, 2000). Consider the GARCH (p, q) model
(Bollerslev, 1986):

εt = ztσt, zt ∼ N(0, 1)

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βiσ
2
t−j

Where σ2
t is the conditional variance of {εt}

at time t, t = 0, 1, . . . , T ; p, q are integers
where p > 0, q ≥ 0, α0 > 0, αi ≥ 0,

i = 1, . . . , p, and βj ≥ 0, j = 1, . . . , q; and
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�
p
i=1αi + �

q
j=1βj < 1 to ensure stationarity. The

parameter vector {α0, α1, . . . αp, β1, . . . , βq, σ
2
0}

for a GARCH (p, q) model is not of high dimen-
sion, so that the repeat rate is reasonable in MH
draws and convergence is fairly quick.

Vrontos et al. (2000) use a random walk
MH algorithm with an incremental normal den-
sity N(0, σ2) to estimate several GARCH and
EGARCH models. The candidate draw is made by
adding a random value generated from N(0, σ2)

to the current value, and σ is set to generate no
more than 50% repeats. In addition, they use
a reversible-jump MCMC algorithm to estimate
several models simultaneously. In addition to the
posterior densities for each model, this algorithm
also generates the posterior probabilities for each
model, which can be used to derive posterior esti-
mates for the optimal composite model by aver-
aging the posteriors of each candidate model with
weights being the corresponding posterior model
probabilities. Their approach therefore accounts
for model uncertainly in volatility forecasting.

The MH algorithm has been essential for
Bayesian estimation of many stochastic volatil-
ity models (see, for example, Jacquier et al.,
1994, 2004; Kim et al., 1998; Eraker et al.,
2003; Eraker, 2004). For a detailed review of the
literature and how to implement Bayesian estima-
tion of stochastic volatility models, please consult
Jacquier and Polson (2010).

The Gibbs sampling and MH algorithm can be
used either separately as discussed above or
together in a hybrid form. With Gibbs sampling
the analyst can first decompose a complicated
model into a sequence of simpler models. If
each of these decomposed models has a conju-
gate prior, simulating from the full conditional
distribution is straightforward. If in some steps
of the Gibbs sampler, a closed-form conditional
posterior distribution does not exist, an MH

approach is necessary. MH within Gibbs algo-
rithm is therefore widely applicable in solving
almost all Bayesian models.

For example, Chib and Winkelmann (2001)
model correlations among count data using corre-
lated latent effects. It is represented by correlated
random terms additive to Poisson parameters in a
log-link specification.7 These additive error terms
are assumed to follow multivariate normal dis-
tribution, which captures the correlation among
these count data using the correlations among
the normal error terms. The resultant model is
a hybrid of Poisson and Log-Normal. The natu-
ral grouping of the model parameters is therefore
based on which model (Poisson or Log-Normal)
these parameters are associated with. For the
Gibbs step associated with the Poisson model, no
conjugate prior exists, therefore an MH algorithm
is employed.

Besides the Poisson model, another commonly
used model without a conjugate prior is the Logit
choice model. The Logit model is commonly used
to model consumer’s choices, and it is especially
popular in Marketing literature since the semi-
nal paper by Guadagni and Little (1983). When
unobserved heterogeneity is introduced into the
model and estimated with Hierarchical Bayesian
approach, the MH within Gibbs can be adopted
(see, for example, Rossi et al., 1996; Allenby
et al., 1998).

4 Summary

The Bayesian statistical approach provides an
alternative way to study many classical prob-
lems in finance. Bayesian estimation techniques,
MCMC methods in particular, are very attrac-
tive to estimating nonlinear models with high-
dimensional integrals in the likelihood or models
with a hierarchical structure. In many cases,
the classical approach would have been difficult
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or infeasible in solving these problems. These
include:

1. The Hierarchical Bayesian approach is natu-
ral for obtaining unobserved heterogeneity by
estimating individual-specific parameters, and
these parameters can be also specified as a
function of individual characteristics (see, for
example, Young and Lenk, 1998; Greyserman
et al., 2006; Cederburg et al., 2011);

2. The solution from the Bayesian approach is
the joint posterior distribution of all the model
parameters. In this case, the stochasticity of
the model parameters can be fully taken into
consideration when using MCMC outputs in
an optimization or forecasting process (see, for
example, Allenby and Lenk, 1994);

3. Bayesian approach is a likelihood-based
approach, which, according to the likelihood
principle, can achieve efficiency. However, the
traditional maximum likelihood method can-
not handle some complex financial models
such as stochastic volatility models, which are
nonlinear and volatility is a latent variable.
MCMC method provides a way to solve such
complicated models via simulation methods
(see, for example, Jacquier et al., 1994, 2004;
Kim et al., 1998; Eraker et al., 2003; Eraker,
2004);

4. Missing data is a common problem in model-
ing analysis in corporate finance. The MCMC
approach offers a convenient solution by
including the missing observations as a latent
variable into the model (see, for example,
Korteweg, 2010); and

5. Rare events such as financial crises are dif-
ficult to study due to the lack of time-
series data. Similarly, it is challenging to
investigate hedge-fund returns with large
tail risks or returns on assets that are
traded infrequently. Sometimes the timing
of the observed data is endogenous, leading
to a dynamic sample selection problem.

Korteweg and Sorensen (2010) examine ven-
ture capital investments in start-up com-
panies using a dynamic sample selection
model estimated using the Gibbs sampling
approach.

In the existing finance literature, research that
uses Bayesian econometrics is primarily in the
area of asset pricing. Bayesian applications in cor-
porate finance have been rather limited, despite
its great potential as a viable alternative to
address some challenging problems in corporate
finance that are difficult to solve by the traditional
approach. Bayesian methods and the MCMC
approach are especially attractive in estimating
nonlinear models with high-dimensional integrals
in the likelihood. Hierarchical Bayesian mod-
els deserve special attention. Corporate finance
research often uses panel data, and the hier-
archical structure of these models can incor-
porate many layers of heterogeneity, such as
industry, firm, and year. A full discussion of
this topic is beyond the scope of this primer,
and we refer interested readers to Korteweg
(2011) for a detailed discussion on the appli-
cation of Bayesian econometrics in corporate
finance.
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Notes

1 The emphasis on prior belief and the idea of subjective
probability in Bayesian analysis have drawn criticism
from the frequentists. A persuasive proponent is a quote
attributed to a renowned statistician I. J. Good, “the sub-
jectivist (i.e. Bayesian) states his judgments, whereas
the objectivist sweeps them under the carpet by calling
assumptions knowledge, and he basks in the glorious
objectivity of science.”
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2 For the purpose of demonstration here, we use a Normal
distribution assumption for the prior. Such a prior is con-
jugate and will lead to convenience in estimation (see the
discussion in the session “Conjugate Priors”). The prior
distribution of βi could be assumed to other distribution
function as well.

3 For the detailed discussion about the conjugacy of the
exponential family, interested readers are referred to Sec-
tion 5.2 in Bernardo and Smith (1994) and Section 2.3 in
Gamerman and Lopes (2006).

4 For more details about Markov Chain and its proper-
ties that are relevant to Bayesian analysis, interested
readers are referred to Chapter 4 of Robert and Casella
(1999).

5 For more detailed discussion on the MH algorithm and
its applications as well as MCMC methods in general,
the readers are referred to Gilks et al. (2000).

6 For a detailed discussion on the AR approach, please
refer to Law and Kelton (2000, pp. 452–458).

7 That is, the log of the Poisson parameter is specified as a
linear function.
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