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A NEW PERSPECTIVE ON THE VALIDITY OF THE
CAPM: STILL ALIVE AND WELL

Moshe Levy a and Richard Roll b

The Capital Asset Pricing Model (CAPM) has far-reaching practical implications for
both investors and corporate managers. The model implies that the market portfolio is
mean variance efficient, and thus advocates passive investment. It also provides the most
widely used measure of risk, beta, which is used to calculate the cost of capital and excess
return (alpha). Most academic studies empirically reject the CAPM, leaving the lack of
a better alternative as the only uneasy justification for using the model. Here we take a
reverse-engineering approach for testing the model and show that with slight variations
in the empirically estimated parameters, well within their estimation-error bounds, the
CAPM perfectly holds. Thus, in contrast to the widely held belief, the CAPM cannot be
empirically rejected.

1 Introduction

The Capital Asset Pricing Model (CAPM) has
fundamental implications for the debate about
active versus passive investment. If the model
holds, the market portfolio is mean variance effi-
cient, implying that stock picking is futile. The
model also implies that the risk priced is the
investment’s beta, and that the cost-of-capital
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is given by the well-known Security Market
Line (SML) equation. While the CAPM is very
widely used in practice, most academic studies
reject the empirical validity of the model,1 and
the typical view in the financial community is
that the model is simply inconsistent with the
empirical evidence. This leaves practitioners and
academics employing the model at an uneasy sit-
uation, where the only justification for using the
empirically rejected model is the lack of a better
alternative.

The typical approach for testing the CAPM
involves empirically estimating the stock return
parameters (average returns and covariances), and
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examining whether these parameters satisfy the
relations implied by the model, i.e., whether
the market proxy is mean variance efficient or
whether the stocks lie on the SML (note that if
the market proxy is mean variance efficient, the
SML risk-return linear relation automatically also
holds, see Roll (1977)). The findings are typically
negative: the sample parameters are inconsis-
tent with the market proxy being mean variance
efficient. In fact, the market proxy is typically
very far from the sample efficient frontier. Obvi-
ously, empirical estimation involves estimation
errors. However, the market proxy remains inef-
ficient even when various shrinkage adjustment
methods are applied to the sample estimates (see
Levy, 1983; Green and Hollifield, 1992; and
Jagannathan and Ma, 2003). These findings are
the basis for the “common wisdom” about the
inconsistency of the model with the empirical
evidence.

In this paper we suggest a new approach for
empirically testing the CAPM. We take a reverse-
engineering approach: we first require that the
return parameters ensure that the market proxy
is efficient. Given this requirement, we look
for parameters that are as “close” as possible to
their sample counterparts. Surprisingly, param-
eters that make the market proxy efficient can
be found very close to the sample parameters,
well within their estimation error bounds. Hence,
minor changes in return parameters reverse pre-
vious negative and disappointing finding for the
CAPM, and it is shown that the model cannot be
empirically rejected.

2 Methodology

Given a market proxy, m, we look for the
“minimal” variation of sample parameters that
would make this proxy mean variance efficient.
Denote the vector of market proxy portfolio

weights by xm, and denote the vector of sam-
ple average returns and the vector of sam-
ple standard deviations by µsam and σsam,
respectively. Csam denotes the sample covariance
matrix, and ρsam denotes the sample correlation
matrix.

The objectives being sought are an expected
return vector µ and a covariance matrix C that
on the one hand make portfolio m mean vari-
ance efficient (i.e., located on the Markowitz
efficient frontier), and on the other hand are as
close as possible to their sample counterparts.
For simplicity, when considering the covariance
matrix C we allow variation only in the stan-
dard deviations, while retaining the same sample
correlations:

[C] =




σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN




[ρsam]

×




σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN




(1)

Allowing the correlations to vary as well intro-
duces technical difficulties, but can only make
the results stronger, as it allows more degrees of
freedom in the optimization procedure described
below.

In order to obtain the parameters (µ, σ) that
are “closest” to their sample counterparts,
(µsam, σsam), we define the following distance
measure D between any parameter set (µ, σ) and
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the sample parameter set:

D((µ, σ), (µ, σ)sam) ≡
√√√√α

1

N

N∑
i=1

(
µi − µsam

i

σsam
i

)2

+ (1 − α)
1

N

N∑
i=1

(
σi − σsam

i

σsam
i

)2

, (2)

where N is the number of assets and 0 ≤ α ≤ 1
is a parameter determining the relative weight
assigned to deviations of the means relative to
deviations of the standard deviations. Recall that
the larger the standard deviation of a given asset’s
returns, the larger the statistical errors involved in
estimating this asset’s parameters, and the larger
the confidence intervals for these parameters.
This is the rationale for dividing the deviations
in Equation (2) by σsam

i —the resulting distance
measure “punishes” deviations in the parame-
ters of assets with low standard deviations more
heavily than similar deviations in assets with
higher standard deviations. The ultimate test
of whether a set of parameters (µ, σ) can be
considered as “reasonably close” to the sample
parameters is the proportion of parameters that
deviate from the standard estimation error bounds
around their sample counterparts, and the size of
those deviations. Intuitively, a parameter set can
be considered “reasonably close” when 95% or
more of the parameters are within the 95% con-
fidence intervals of the sample parameters (in
Levy and Roll (2010) we also employ more for-
mal multivariate tests). The choice of the distance
measure D in Equation (2) and its minimization
in the optimization problem described below are
designed to minimize the statistical significance
of the deviations between µ and σ and their sam-
ple counterparts, but we should stress that the
statistical conclusion regarding the compatibility
of the parameters (µ, σ) with the sample param-
eters is independent of the choice of the distance
measure D.

To find the set of parameters (µ, σ) that make
the proxy m mean variance efficient and are
closest to the sample parameters, we solve the

following optimization problem:

(i) Optimization Problem:

Minimize D((µ, σ), (µ, σ)sam)

Subject to:


σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN




[ρsam]

×




σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN







xm1

xm2
...

xmN




= q ·




µ1 − rz

µ2 − rz
...

µN − rz


, (3)

where q > 0 is the constant of proportionality,
and rz is the zero-beta rate. Both q and rz are
free variables in the optimization. Thus, there are
2N +2 variables in the optimization: Nµ’s, Nσ’s,
q and rz. Any set of these 2N+2 parameters satis-
fying (i) makes the proxy portfolio mean variance
efficient (see, for example, Roll (1977)). We are
looking for the set of parameter vectors (µ∗, σ∗)
that satisfy this mean variance efficiency condi-
tion (i.e., they ensure that the proxy portfolio is the
optimal tangency portfolio from the point of view
of the mean variance investor) and are closest to
the sample parameters.2
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Our approach is different from the approach
employed in previous studies, such as Black
et al. (1972) and Gibbons et al. (1989), for
example, in two main regards. First, we are not
required to assume the existence of a risk-free
asset. Second, and more importantly, the standard
approach looks at the adjustment to the empiri-
cal average returns required to make the market
proxy efficient (i.e., the stocks’ alphas), and asks
whether these adjustments are statistically plau-
sible. In contrast, we are looking at simultaneous
adjustments to the average returns and the stan-
dard deviations (and could, in principle, include
adjustments to the correlations as well). Thus,
while the standard approach examines the statis-
tical plausibility of a single vector of alphas, we
examine a multitude of vectors of average return
and standard deviation adjustments. This allows
us many more degrees of freedom relative to the
standard approach, and explains why we find that
only small adjustments are required to make the
market proxy efficient. For a detailed compari-
son of our results with the pervious literature, see
Levy and Roll (2010).

3 Data and results

Our demonstration sample consists of the 100
largest stocks in the U.S. market (according to
December 2006 market capitalizations), which
have a complete monthly return records over the
period January 1997–December 2006 (120 return
observations). Columns (2) and (4) in Table 1
report the sample average returns and standard
deviations for 30 of these stocks (the complete
information for all 100 stocks is given in Levy
and Roll (2010)). The average sample correlation
is 0.24.

Following previous research (e.g., Stambaugh
(1982)), we examine a market proxy whose
weights are market capitalizations, in this case

of the 100 stocks as of December 2006,

xmi = market cap of firm i∑100
j=1 market cap of firm j

.

The proxy portfolio and the sample mean variance
frontier are shown in Figure 1 by the trian-
gle and thin line, respectively. As the figure
illustrates, the proxy portfolio is far from the
efficient frontier when the sample parameters
are employed. This is consistent with previous
studies.

To solve the optimization problem numeri-
cally, we implement Matlab’s fmincon function,
which is based on the interior-reflective Newton
method and the sequential quadratic program-
ming method. The solution (µ∗, σ∗) is given in
Columns (3) and (5) of Table 1.

t-Values for the adjusted expected returns µ∗ are
given in Column (6) of Table 1. They reveal
that the difference between the sample average
return, µsam

i , and µ∗
i is nonsignificant at the

95% level for all stocks (this is true not only
for the 30 stocks shown in the table, but for
the other 70 stocks as well). Column (7) pro-
vides the ratio (σ∗

i )2/(σsam
i )2 for each stock. The

95% confidence interval for this ratio is the range
0.790–1.319.3 The values in Column (7) reveal
that for all stocks the ratio (σ∗

i )2/(σsam
i )2 is well

within this range (and this is also true for the 70
stocks not shown in the table). Thus, the solution
(µ∗, σ∗) to the optimization problem is very close
to the sample parameter set in the sense that none
of the parameters is significantly different from
its sample counterpart.

The t-tests reported above rely on what might
be considered a problematic assumption, viz.
that the estimation errors are independent across
parameters. Since all sample estimates were
obtained with data spanning the same calendar
time period, some interdependence in estima-
tion errors would not be all that surprising. To
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Table 1 The sample parameters and closest parameters ensuring that the market proxy is mean variance
efficient.

(1) Stock # (i) (2) µsam
i (3) µ∗

i (4) σsam
i (5) σ∗

i (6) t-Value for µ∗
i

(7) (σ∗
i )2/(σsam

i )2

(the 95% confidence
interval for this value
is (0.790–1.319))

1 0.024 0.018 0.165 0.167 −0.423 1.019
2 0.021 0.019 0.115 0.115 −0.170 1.003
3 0.011 0.017 0.106 0.104 0.588 0.963
4 0.029 0.023 0.158 0.160 −0.444 1.028
5 0.039 0.022 0.150 0.156 −1.228 1.077
6 0.005 0.011 0.075 0.073 0.952 0.953
7 0.007 0.013 0.072 0.070 0.938 0.942
8 0.012 0.010 0.051 0.052 −0.433 1.028
9 0.013 0.015 0.070 0.069 0.286 0.978

10 0.016 0.018 0.099 0.098 0.185 0.986
11 0.010 0.013 0.067 0.066 0.344 0.977
12 0.016 0.009 0.092 0.093 −0.819 1.025
13 0.015 0.011 0.071 0.072 −0.627 1.035
14 0.019 0.012 0.100 0.102 −0.702 1.034
15 0.011 0.011 0.061 0.061 −0.029 1.006
16 0.032 0.014 0.159 0.162 −1.215 1.044
17 0.023 0.025 0.158 0.157 0.145 0.990
18 0.024 0.021 0.146 0.147 −0.232 1.016
19 0.011 0.012 0.086 0.085 0.199 0.988
20 0.007 0.010 0.067 0.066 0.477 0.979
21 0.011 0.011 0.065 0.065 0.082 0.996
22 0.018 0.016 0.080 0.081 −0.225 1.018
23 0.012 0.008 0.067 0.068 −0.652 1.023
24 0.013 0.004 0.059 0.059 −1.533 0.995
25 0.017 0.014 0.088 0.088 −0.361 1.021
26 0.014 0.013 0.081 0.082 −0.128 1.007
27 0.006 0.012 0.077 0.075 0.810 0.955
28 0.018 0.011 0.077 0.078 −1.058 1.044
29 0.010 0.012 0.087 0.086 0.276 0.989
30 0.010 0.010 0.065 0.064 0.055 0.999

For the sake of brevity, this table reports only 30 of the 100 stocks (the complete table is given in the appendix of Levy and
Roll (2010)). The sample parameters are given in the second and fourth columns. The expected returns and standard deviations
which are closest to these parameters and ensure that the market proxy is efficient (i.e., the parameters that solve Optimization
Problem given by Eq. (3)) are given in Columns (3) and (5). The t-values for the expected returns are given in Column (6),
which shows that none of these values are significant at the 95% level (this is also true for the 70 other stocks not shown in
the table). Column (7) reports the ratio between the optimized variances (σ∗)2 and the sample variances. The 95% confidence
interval for this ratio is (0.790–1.319) (see footnote 3). All of the ratios in the table, as well as the ratios for all other 70 stocks
not shown here, fall well within this interval. These results are obtained with a value of α = 0.75 in the minimized distance
measure D (see Equation (2)). Higher values of α reduce the variation in the expected returns (at the expense of increasing the
deviations in the standard deviations).
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14 Moshe Levy and Richard Roll

Figure 1 The efficient frontier and market proxy with
the sample and the adjusted return parameters.

The thin line curve and the triangle (partly hidden behind the star)
show the mean variance frontier and the market proxy with the
sample parameters. As typical of other studies, the market proxy is
very far from the efficient frontier when the sample parameters are
employed. The bold line and the star show the mean variance fron-
tier and the market proxy with the adjusted parameters (µ∗, σ∗).
With these parameters the market proxy is mean variance efficient.

assure that such a possibility did not seriously
affect our inference that the proxy portfolio was
not statistically significantly off the efficient fron-
tier, we carried out two further tests that take
account of possible estimate dependence. The
first test assumes that the individual stock returns
are drawn from a multivariate normal distribu-
tion and employs the likelihood ratio test. With
this test we again find that the hypothesis that the
proxy portfolio is mean variance efficient cannot
be rejected (for more details, see Levy and Roll
(2010)).

The second test does not assume normal return
distributions. Most asset returns, including those
used here, exhibit thick tails relative to the nor-
mal distribution. Consequently, the sample means
and standard deviations may not conform all
that well to a non-Central Wishart distribution.
We therefore conduct a second test using the

bootstrap, which makes no distributional assump-
tion but merely resamples from the original
observations.

To carry out the bootstrap, we first adjust the
empirical T ×N return matrix (T monthly returns
for N stocks) to create a “true” return matrix with
parameters µ∗ and σ∗. Then, we resample ran-
domly from this return matrix and calculate the
parameters (µBS, σBS) obtained in each random
draw of T periods. For each draw, a “distance” is
calculated between (µBS, σBS) and (µ∗, σ∗) and
compared with the distance between (µsam, σsam)

and (µ∗, σ∗). Thus, we are assuming that the
CAPM holds with the parameters (µ∗, σ∗), and
we ask, given these parameters, how likely it
is to sample parameters such as (µsam, σsam)

with T observations. If the bootstrap distance
exceeds the original sample distance in a large
fraction of cases, one can conclude that the sam-
ple and adjusted parameters are reasonably close.
The detailed steps of the bootstrap procedure are
provided in the appendix.

The distance between the sample parameter set
(µsam, σsam) and the parameter set found with the
optimization in Equation (3), (µ∗, σ∗), is 0.06.
Out of 10,000 resampled sets of T observations,
ALL had a distance larger than this value. Figure 2
shows the distribution of the distance d obtained
with the bootstrap.

It may seem suspicious that none of the bootstrap
distances were smaller than the distance between
the sample and adjusted values, but remember
that the two types of distances are quite differ-
ent in character. The latter, the distance between
(sam) and (∗), emerges from a portfolio optimiza-
tion while the former, the distance between (∗)
and (BS), is entirely attributable to statistical sam-
pling error. There is no theoretical reason why one
cannot be much smaller (or larger) than the other.
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Figure 2 Probability distribution of Euclidean dis-
tance between bootstrapped and optimally adjusted
parameters.

The optimally adjusted parameters (means and standard devia-
tions) are sufficient to make the proxy market portfolio lie on the
(adjusted) mean variance efficient frontier. The Euclidean distance
between the adjusted parameters and the original sample param-
eters is 0.06. Ten thousand resampled sets of returns were drawn
and the Euclidean distance is calculated for each set. As shown
above, all resampled distances lie above the sample distance.

To think of it another way, suppose we had the
exact same (sam) parameter values and therefore
the same (∗) values as well, but these were com-
puted from 240 monthly returns rather than 120.
In this case, the BS/∗ distances become smaller
but the sam/∗ distance is unaltered. We actually
redid the bootstrap using 240 observations per
sample and found that 12 of 10,000 BS/∗ distances
were smaller than the sam/∗ distance. This is still
a very small number, but it is not zero, and it illus-
trates the fundamental difference between the two
procedures.

Overall, it seems safe to conclude that statistically
insignificant parameter adjustments can render
our proxy portfolio efficient, even taking account
of cross-sectional dependence in the underlying
stock returns.

4 Discussion of the results

To confirm that the parameters (µ∗, σ∗) make the
proxy portfolio mean variance efficient, one can
examine the efficient frontier and the location of
the proxy portfolio in the mean standard deviation
plane with these parameters. These are illustrated
by the bold line and the star in Figure 1. The figure
shows that with the parameters (µ∗, σ∗) the proxy
portfolio lies on the efficient frontier. It is inter-
esting to note that while the modified parameters
(µ∗, σ∗) do not have a big impact on the expected
return or the standard deviation of the proxy port-
folio (the star is located very close to the triangle),
they do have a big effect on the shape of the fron-
tier. Why is the modified frontier much flatter than
the sample frontier?

The explanation can be found in Figure 3, which
shows the adjustment to the expected return,
µ∗

i − µsam
i , as a function of the sample aver-

age return, µsam
i . The figure reveals that high

sample returns tend to get negative corrections

Figure 3 The correction to the expected returns and
a function of the sample average return.

For stocks with high sample average returns, the correction in the
expected return tends to be negative. The opposite holds for stocks
with low sample average returns. Thus, the corrections produced
by the solution to the optimization problem are reminiscent of
statistical shrinkage methods.
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16 Moshe Levy and Richard Roll

(µ∗
i < µsam

i ), while the opposite holds for low
sample returns. Thus, the cross-sectional vari-
ation of µ∗

i is smaller than the cross-sectional
variation of µsam

i , which explains why the fron-
tier is flatter (recall that in the limiting case where
all expected returns are identical, the frontier
becomes completely flat—it is a horizontal line).
Figure 3 shows that the corrections to the sample
means implied by the optimization are reminis-
cent of standard statistical shrinkage methods.
However, unlike the standard shrinkage methods,
the method employed here ensures that the proxy
is mean variance efficient.

There is excellent intuition behind such a result
when one recalls two facts: (a) the efficient fron-
tier itself is the result of an optimization; it gives
the minimum variance for each level of mean
return, and (b) sample parameter estimates are
equal to true population parameters plus estima-
tion errors. An efficient frontier computed using
sample estimates optimizes with respect to sam-
pling errors in addition to true parameters, so
assets with overestimated means are likely to
be weighted too heavily in frontier portfolios
and vice versa for assets with underestimated
means. This suggests that an efficient frontier
computed using population parameters, if they
were only known, would fall well inside the fron-
tier computed using sample estimates, at least at
most points. The main exception would be near
the global minimum variance portfolio, whose
weights do not depend on mean returns; indeed,
such a relation is exactly what we see depicted in
Figure 1.

The implication of these results is quite striking.
In contrast to “common wisdom”, they show that
the empirical proxy portfolio parameters are per-
fectly consistent with the CAPM if one allows
for only slight estimation errors in the return
moments. The reason that most previous studies
have found that the market proxy is inefficient,

even when various standard shrinkage methods
have been employed, is that the variation of the
parameters necessary to make the proxy portfolio
efficient is very specific. While this variation is in
the spirit of shrinkage, it is specifically designed
to ensure the efficiency of the proxy portfolio, and
thus it is fundamentally different than the standard
statistical shrinkage methods.

5 Asset pricing implications

The Security Market Line (SML) formula is prob-
ably the most widespread method for estimating
the cost of capital and for pricing risky assets.
Using beta and the SML formula for estimat-
ing the expected return, rather than employing
the sample average return directly, is usually jus-
tified on the basis that the statistical estimation
of beta is more stable than that of the average
return. However, when there are questions about
how well the SML relationship holds empirically,
there are serious doubts about employing betas
for pricing.4 While we cannot prove that the SML
relationship holds empirically with the ex ante
parameters, our analysis does provide another rea-
son for employing betas for estimating the cost of
capital.

Suppose that the CAPM holds with the true
ex ante parameters (µ∗, σ∗), and that the empiri-
cally measured parameters are (µsam, σsam). The
true and sample betas of stock i are given respec-
tively by:

β∗
i =

∑N
j=1 xmjσ

∗
i σ∗

j ρij

x′
mCxm

(4a)

βsam
i =

∑N
j=1 xmjσ

sam
i σsam

j ρij

x′
mCsamxm

, (4b)

where xm denotes the market portfolio weights.
The true cost of equity of firm i is µ∗

i . If one
employs the observable βsam

i in the SML formula
instead of the correct β∗

i , how accurate will the
resulting cost of capital be estimate? In other
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Figure 4 The relation between sample betas and the
“true” betas.
The “true” parameters are those that solve the optimization prob-
lem (Equation (3)) and satisfy the CAPM: (µ∗, σ∗). The sample
parameters are (µsam, σsam). The true and sample betas are given
by Equation (4). The figure shows that the sample betas are very
close to the true betas, and thus yield excellent estimates of the
expected returns.

words, how close are βsam
i and β∗

i ? The answer
is shown in Figure 4, where the parameter set
(µ∗, σ∗) employed is the solution to the optimiza-
tion problem in Equation (3). The figure reveals
that the difference between βsam

i and β∗
i is very

small. The reason is that both the denominators
and the numerators of Equations (4a) and (4b) are
very similar. The variance of the market proxy
is quite close whether the optimized parameters
or the sample parameters are employed (compare
the horizontal location of star and the triangle in
Figure 1). As for the covariances in the numer-
ator, note that σ∗

j ≈ σsam
j , and in addition, the

deviations tend to cancel each other out in the
summation, as in some cases σ∗

j > σsam
j , while in

others σ∗
j < σsam

j (see Column 7 in Table 1).5

Since the market proxy is efficient with the true
parameters (µ∗, σ∗), the following relationship
holds exactly:

µ∗
i = rz + β∗

i (µm − rz), (5)

where rz is the expected return on the zero-beta
portfolio for index m. Common practice sub-
stitutes a “riskless” rate, rf , for rz, but this is
appropriate only when f and z have the same
mean return. Since βsam

i ≈ β∗
i , employing the

SML with the sample beta, as is commonly done
in practice, provides an excellent estimate for the
true expected return (assuming rf = rz)

6:

µ∗
i − �rf + βsam

i (µsam
m − rf )�

= β∗
i (µ

∗
m − rf ) − βsam

i (µsam
m − rf ) ≈ 0.

(6)

This is a strong result: if the CAPM holds in a way
that is consistent with the sample parameters, the
differences between sample betas and true betas
are going to be small. Thus, if one employs the
SML formula for pricing, which implies that the
CAPM holds with the ex ante parameters, one can
be confident about using the sample betas, and
should not worry about estimation errors in the
betas. This conclusion is reached because we are
not just looking at the statistical estimation error
of a single asset’s beta in isolation, as is typically
done, but rather at the error in beta, given that the
CAPM holds in a way that is consistent with the
sample parameters (µsam, σsam).

From a practical perspective, since sample betas
are quite close to betas that have been adjusted
to render the market proxy mean variance effi-
cient, improved estimates of expected returns can
be obtained from sample betas alone. Sample
mean returns should be ignored! To illustrate, in
Figure 5, Panel A shows the cross-sectional rela-
tion between sample mean returns and sample
betas for our 100 stocks while in Figure 5, Panel B
shows the analogous relation for adjusted means
and betas. Clearly, the sample means in Panel A
are not closely related at all to sample betas but the
adjusted means in Panel B are perfectly related to
adjusted betas.7
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Figure 5 The securities market line scatter for sam-
ple versus adjusted means and betas.

Sample estimates of means and betas for our 100 stocks are plotted
against each other in Panel A. Panel B plots the corresponding
adjusted means and betas that are obtained from the solution to
the optimization problem (Equation (3)).

Consequently, to obtain an improved expected
return estimate for any stock, first calculate the
adjusted mean return for the market index proxy
and for its corresponding zero-beta portfolio.8

Plugging these numbers along with the sample
beta (because it’s close to the adjusted beta) into
the usual CAPM formula delivers the improved
estimate of expected return. Making the mar-
ket index proxy mean variance efficiency pro-
duces useful betas for many practical purposes
such as estimation of the cost of equity capi-
tal for a firm or of the discount rate for a risky
project.

6 Summary

The “common wisdom” in the financial commu-
nity is that the empirical return parameters and
market portfolio weights are incompatible with
the CAPM theory. Almost any sample parameter
set, as well as any standard shrinkage correction
to the parameters, leads to an inefficient mar-
ket proxy. This is the reason that most studies
have concluded that the “CAPM is dead”. Yet,
our findings show that the corrections obtained by
the “reverse optimization” method are both small,
and at the same time they ensure the efficiency of
the market proxy, and hence the validity of the
CAPM risk–return relationship.

These findings suggest that the CAPM is consis-
tent with the empirically observed return parame-
ters and the market proxy portfolio weights. Of
course, this does not constitute a proof of the
empirical validity of the model. We should also
be careful to note that it is possible that other
asset pricing models cannot be rejected when
simultaneous corrections to the means and vari-
ances are taken into consideration. Such analysis
is beyond the scope of the present paper. We
focus on the CAPM, and our findings show that
the model cannot be rejected, in contrast to the
widespread belief in our profession. The intuitive
idea that shrinkage corrections should increase
the empirical validity of the CAPM is shown
to be valid—with the right corrections, which
are small, the index proxy is perfectly efficient.
The analysis also shows that in this framework
employing the sample betas provides an excellent
estimate of the true expected returns.

Appendix

Below are the step-by-step details of the bootstrap
procedure:

(1) The sample returns, ri,t , are adjusted to create
returns with the desired parameters, (µ∗, σ∗),
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by the simple linear transformation r∗
i,t =

ai + biri,t , with bi = σ∗/σsam and ai =
µ∗ −biµ

sam. (Obviously, the correlations are
unaltered.) The adjusted returns are arranged
in a matrix with T columns and N rows.

(2) From this (T × N) matrix, T columns
are drawn randomly with replacement, thus
maintaining the underlying cross-sectional
dependence, and (µBS, σBS) are computed
for this (re-)sample.

(3) The “distance” between the sample param-
eters (µBS, σBS) and the true parameters
(µ∗, σ∗) is computed as the simple Euclidean
distance:

d ≡
√√√√ N∑

i=1

(µBS
i − µ∗

i )
2+

N∑
i=1

(σBS
i − σ∗

i )2.

We should note that one could employ
various other more sophisticated distance
measures (e.g., the distance D in Equa-
tion (2)). The results are robust to the dis-
tance measure employed. Obviously, we
employ the same measure d for the dis-
tance between (µsam, σsam) and (µ∗, σ∗) and
between (µBS, σBS) and (µ∗, σ∗).

(4) This distance is compared with the corre-
sponding distance between the parameters
(µsam, σsam) and (µ∗, σ∗).

Notes
1 See, for example, Gibbons (1982), Jobson and Korkie

(1982), Levy (1983), Shanken (1985), Kandel and Stam-
baugh (1987), Gibbons et al. (1989), Zhou (1991), and
MacKinlay and Richardson (1991).

2 This optimization problem is similar in spirit to Sharpe’s
(2007) “reverse optimization” problem. Levy (2007)
employs an analogous technique to find mean variance
efficient portfolios that have all-positive weights. This
approach was first used in a very innovative paper by
Best and Grauer (1985).

3 The ratio (n−1)s2

σ2 is distributed according to the χ2
n−1 dis-

tribution, where σ2 is the population variance, s2 is the
sample variance (or (σsam)2 in the notation used in this

paper), and n is the number of observations. We have
120 monthly return observations, hence n = 120. As we
are looking for the 95% confidence interval for s2/σ2,
we need to find the critical values c1 and c2 for which
P(χ2

119 > c1) = 0.025, and P(χ2
119 < c2) = 0.025.

For large n,
√

2χ2
n − √

2n − 1 can be approximated by
the standard normal distribution. Thus, the critical val-
ues c1 and c2 satisfy

√
2c1 − √

2 · 119 − 1 = 1.96 and√
2c2 −√

2 · 119 − 1 = −1.96, which yield c1 = 150.6
and c2 = 90.2. Thus, the 95% confidence interval
for s2/σ2 is given by 90.2 < 119 · s2/σ2 < 150.6 or
0.758 < s2/σ2 < 1.266. Alternatively, this range can be
also stated as 0.790 < σ2/s2 < 1.319.

4 This is, of course, one of the major debates in finance.
See, for example, Reinganum (1981), Levy (1982),
Lakonishok and Shapiro (1986), Fama and French
(1992), and Roll and Ross (1994).

5 Figure 4 shows the relation between the βsam
i ’s and the

β∗
i ’s when we use a value of α = 0.75 in the distance

measure D (see Equation (2)). When a higher value of
α is employed, the µ∗

i ’s are closer to their sample coun-
terparts, and the σ∗

i ’s are more distant from their sample
counterparts. As a result, the differences between the
βsam

i ’s and the β∗
i ’s also increase. Yet, even with a very

high value of α = 0.97 the β∗
i ’s are still very close to the

βsam
i ’s, with a correlation of 0.96.

6 In the optimization problem Equation (3) rz is a free
parameter. However, if one wishes to employ a spe-
cific value, e.g., the current T-bill rate, one can impose
this value in the optimization. The expected return of
the market proxy is typically estimated by the long-term
historical sample average return.

7 The slight deviations from linearity in Figure 5, Panel B
are caused by rounding error.

8 For most proxies, the sample means will be close to the
adjusted means.
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