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EFFICIENT INDEXATION: AN ALTERNATIVE
TO CAP-WEIGHTED INDICES∗

Noël Amenc, Felix Goltz, Lionel Martellini
and Patrice Retkowsky

This paper introduces a novel method for the construction of equity indices that, unlike their
cap-weighted counterparts, offer an efficient risk/return trade-off. The index construction
method goes back to the roots of modern portfolio theory and focuses on the tangency
portfolio, the portfolio that weights index constituents so as to obtain the highest possible
Sharpe ratio. The major challenge is to generate the required input parameters in a
robust manner. The expected excess return of each stock is estimated from portfolio sorts
according to the stock’s total downside risk. This estimate uses the economic insight that
stocks with higher risk should compensate their holders with higher expected returns.
To estimate the covariance matrix, we use principal component analysis to extract the
common factors driving stock returns. Moreover, we introduce a procedure to control
turnover in order to implement the method with low transaction costs. Our empirical
results show that portfolio optimization with our robust parameter estimates generates
out-of-sample Sharpe ratios significantly higher than those of the corresponding cap-
weighted indices. In addition, the higher risk-return efficiency is achieved consistently
and across varying economic and market conditions.

0 Introduction

The capital asset pricing model (CAPM), intro-
duced by Sharpe (1964), has had a profound

∗The authors can be contacted at research@edhec-risk.com.
We thank Erika Richter and Dev Sahoo for excellent
research assistance.

influence on the management of institutional
portfolios. The CAPM starts with a series of
assumptions and theories that the market portfolio
of all assets is risk-return efficient in the sense that
it provides the highest possible expected return
above the risk-free rate per unit of volatility,
i.e., the highest Sharpe ratio. Since the CAPM
is taught in business schools around the world,
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there is a widespread belief that all investors
should hold the market portfolio, leveraged or
de-leveraged with positions in the risk-free asset
depending on their risk aversion. In practice,
“holding the market” becomes virtually impossi-
ble, but its approximate implementation in terms
of some market-capitalization-weighted equity
indices has become the standard practice for most
investors and asset managers.

Capitalization weighting in equity index con-
struction has, however, come in for harsh criti-
cism. Early papers by Haugen and Baker (1991)
or Grinold (1992) provide empirical evidence that
market-cap-weighted indices provide an ineffi-
cient risk-return trade-off. From the theoretical
standpoint, the poor risk-adjusted performance
of such indices should not come as a surprise,
as market-cap-weighting schemes are risk-return
efficient only at the cost of heroic assumptions.

• The theoretical basis for holding the market
portfolio is the CAPM. An extensive body of
literature has shown that the theoretical pre-
diction of an efficient market portfolio breaks
down when some of the highly unrealistic
assumptions of the CAPM do not bear out.
In particular, financial theory does not predict
that the market portfolio is efficient if investors
have different time horizons, if they derive
wealth from nontraded assets such as housing,
social security benefits, or human capital, if
short sales are constrained or if frictions in the
form of taxes exist. Unsurprisingly, when test-
ing the CAPM on securities data, the model is
commonly rejected.1

• In addition, even if the CAPM were the true
asset pricing model, holding a market-cap-
weighted equity index would be a rather poor
proxy for holding the market portfolio, which
in principle is a combination of all assets,
traded or nontraded, financial or nonfinancial,
including human capital.

In the wake of criticism of market-cap-weighted
indices, alternative weighting schemes have been
introduced. In pursuit of a more representative
weighting scheme, researchers have proposed to
weight stocks by firm characteristics such as earn-
ings, dividends, or book value (Arnott et al., 2005;
Siegel et al., 2007). Other research has focused
on constructing minimum variance benchmarks
(Chan et al., 1999; Clarke et al., 2006), maxi-
mum diversification benchmarks (Choueifaty and
Coignard, 2008), equal-risk contribution bench-
marks (Maillard et al., 2008) and risk factor
benchmarks (Lee, 2003; Eggins and Hill, 2008;
Wagner and Stocker, 2009).

This paper focuses on the portfolio that achieves
the highest risk-adjusted performance. In the end,
if investors care about a portfolio’s risk-adjusted
performance, one should focus on designing a
portfolio with the highest reward-to-risk ratio,
i.e., with the highest Sharpe ratio. This portfo-
lio is known as the tangency portfolio. Following
Markowitz (1952), Tobin (1958) notes that any
investor can separate his investment decisions into
two steps. First, find the tangency portfolio and
then use an investment in the risk-free asset to
obtain an overall portfolio that corresponds to the
investor’s risk aversion. Our approach is to focus
on the design of this tangency portfolio. We thus
return to the roots of modern portfolio theory to
provide an alternative to the current indexation
methods of constructing equity indices. The aim
of this efficient indexation approach is to provide
investors with benchmarks that reflect the possi-
ble risk-reward ratio from a broadly diversified
stock market portfolio, and that are thus a proxy
for the normal returns of an exposure to equity
risk.

To generate the tangency portfolio, we resort to
standard mean–variance optimization. Although
our aim to maximize risk-return efficiency is
fully consistent with financial theory, successful
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implementation of the theory depends not only on
its conceptual grounds but also on the reliability
of the input to the model. In our case, the results
depend greatly on the quality of the parameter
estimate (the covariance matrix and the expected
returns of all stocks in the index).

The CAPM, as it happens, is a poor guide to
the input parameters. For the CAPM, expected
returns should be proportional to the stock’s beta,
though it has in fact been shown that such a rela-
tionship does not hold (Fama and French, 1992).
Likewise, the single-factor nature of the CAPM
would mean that there is a single (market) fac-
tor driving the correlation of stocks, whereas the
consensus in both academe and business is that
multifactor models do a better job capturing the
common drivers behind stock comovements.

Extending preliminary tests reported in Martellini
(2008), we generate proxies for tangency port-
folios that rely on robust input parameters for
both the covariance matrix and expected returns.
One challenge is the estimation of expected return
parameters. Instead of relying purely on statistics,
which is known to generate poor expected return
estimates, we use a common sense estimate of
expected returns that relies on a risk-reward trade-
off. We use the insight that the return on a given
stock in excess of the risk-free rate is proportional
to the riskiness of the stock. Investors are often
underdiversified and averse not only to systematic
risk but also the specific risk of a stock. Investors
shun the volatility, negative skewness, and kurto-
sis of a stock’s returns. We use a suitably designed
risk measure that integrates these aspects and esti-
mate expected returns by sorting stocks into high
risk and low risk categories. The second central
ingredient in the tangency portfolio is an estimate
of the covariance of stock returns. We use a robust
estimation procedure that first extracts the com-
mon factors of stock returns and then uses these
factors to model the comovement of individual

stocks. This efficient indexation procedure allows
us to construct proxies for the tangency portfolios
whose risk/reward ratio is significantly better than
that of cap-weighted indices.

We use constituent data for the S&P 500 index
to construct tangency portfolio proxies based on
the same set of stocks as the cap-weighted index.
Overall, our efficient indices obtain both higher
average returns and lower volatility than do cap-
weighted indices. However, portfolios rebalanced
every quarter are subject to high turnover. We
reduce turnover by limiting rebalancing; only
when significant new information arrives do we
rebalance our optimal weights.

This approach leads to significantly less turnover
yet maintains high Sharpe ratios. Annual turnover
in excess of the cap-weighted index is less than
20%. Over the long term, our indices increase
the Sharpe ratio of the S&P 500 cap-weighted
index by more than 70%. Interestingly, this
improved risk/reward trade-off does not come at
the cost of an increase in extreme risks, and it
holds when conditioning on business cycles or
implied volatility. When performance over sev-
eral 10-year periods is analyzed, the efficient
indexation strategy had lower Sharpe ratios only
during the bull markets of the 1990s, although
volatility was still lower than that of the cap-
weighted indices.

Cap-weighted indices weight stocks by the
footprint they leave on the stock market.
Characteristics-based indices weight stocks by
their footprint in the economy. Investors prob-
ably care little about these aspects, unless they
want portfolios representative of the stock mar-
ket or the economy. Our approach weights stocks
by their “risk/return footprint” on the investor’s
portfolio. Investors, of course, would prefer high
weights in stocks that contribute positively to the
portfolio’s Sharpe ratio and low weights in stocks
that contribute less to increasing the Sharpe ratio.
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The contribution of this paper is to provide an
index construction method that explicitly takes
into account this investor objective.

It is sometimes argued that financial theory pro-
vides arguments in favor of the efficiency of
cap-weighted equity indices, and that alternative
weighting schemes are necessarily inconsistent
with general equilibrium. However, it should be
noted, that while the CAPM predicts a mean–
variance efficient market portfolio, (i) this pre-
diction is based on highly unrealistic assumptions
(as emphasized in Markowitz (2005)) and (ii)
existing stock market indices can only be very
poor proxies of the theoretical market portfolio
which is in fact unobservable in practice (see
Roll 1977). While it is beyond the scope of this
paper to analyze general equilibrium implications
of our approach, the index construction method
analyzed in this paper is fully consistent with
financial theory as we consider a partial equilib-
rium by constructing the tangency portfolio for
a mean variance investor given a set of robust
parameter estimates.

The remainder of this paper is organized as fol-
lows. In Section 1, we describe the parameter esti-
mates used in the portfolio optimization, namely,
the covariance matrix and the expected returns.
Section 2 is an overview of the implementation
of the method, addressing issues such as data,
timing, weight constraints, and turnover control.
Section 3 analyzes the performance of the result-
ing portfolios both over the long run and in terms
of consistency over time and across different
market conditions. A final section concludes.

1 Robust estimation of return comovements
and expected returns

A key to providing truly efficient equity indices is,
first, to recognize this objective explicitly in the
index construction process. However, improve-
ment of the objective function is possible only

if input parameters are reliable. We now turn
to describing the derivation of input parameters,
first for the covariance matrix and then for the
expected returns.

1.1 Improved estimation of the comovements
of stock returns

Several improved estimates for the covariance
matrix have been proposed, including the factor-
based approach (Sharpe, 1964), the constant
correlation approach (Elton and Gruber, 1973),
and the statistical shrinkage approach (Ledoit
and Wolf, 2004). In addition, Jagannathan and
Ma (2003) find that imposing (short selling)
constraints on the weights in the optimization pro-
gram improves the risk-adjusted out-of-sample
performance in a manner similar to some of the
improved covariance matrix estimators.

In these papers, the authors focus on testing
the out-of-sample performance of global min-
imum variance (GMV) portfolios, as opposed
to the MSR portfolios (also known as tangency
portfolios), as there is a consensus that avail-
able estimates of expected returns are not robust
enough to be used (see Section 3 for a new
approach to expected return estimation).

The key problem in covariance matrix estima-
tion is the curse of dimensionality; when a large
number of stocks is considered, the number of
parameters to estimate grows exponentially. Fur-
thermore, the sample covariance matrix will be
noninvertible if the number of assets N exceeds
the number of available observations T ; this is
particularly disturbing since the minimum vari-
ance (MV) investor’s optimal portfolio depends
on the inverse of the covariance matrix.

Therefore, at the estimation stage, the challenge
is to reduce the number of factors. In general, a
multifactor model decomposes the (excess) return
(in excess of the risk-free asset) on an asset into its
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expected rewards for exposure to the “true” risk
factors. The use of a multifactor model originates
in Ross’s (1976) arbitrage pricing theory (APT).
Formally, the returns on an asset are governed by
the following linear factor model:

rit = αit +
K∑

j=1

βi,jt · Fjt + εit

or in matrix form for all N assets

rt = αt + βtFt + εt, (1.1)

where βt is an N × K matrix containing the
sensitivities of each asset i with respect to the cor-
responding jth factor movements; rt is the vector
of the N assets’ (excess) returns, Ft a vector con-
taining the K risk factors’ (excess) returns, and εt

the N ×1 vector containing the zero mean uncor-
related residuals εit . The covariance matrix for
the asset returns, implied by a factor model, is
given by

� = β · �F · βT + �ε, (1.2)

where �F is the K × K covariance matrix of the
risk factors and �ε an N × N covariance matrix
of the residuals corresponding to each asset.

1.1.1 Choosing the appropriate factors

Although the factor-based estimator is expected
to allow a reasonable trade-off between sample
risk and model risk, the problem of choosing the
“right” factor model remains. We take a some-
what agnostic approach to this question, and aim
to rely as little as possible on strong theoretical
assumptions by using principal component analy-
sis (PCA) to determine the underlying risk factors
from the data. The PCA method is based on a
spectral decomposition of the sample covariance
matrix and its goal is to explain covariance struc-
tures using only a few linear combinations of the
original stochastic variables that will constitute
the set of (unobservable) factors.

We can use PCA in the context of a factor model,
making the assumption that all stock returns
depend on a number of underlying and unob-
servable stochastic factors F1, F2, . . . , FK, as
well as on the variable specific errors/variations
ε1, ε2, . . . , εN . Consider the N-dimensional
stochastic (demeaned) vector r to be any of the
stochastic variables rt for t = 1, 2, . . . , T with
sample covariance matrix S. The factor model in
matrix form would be:

r = LF + ε, (1.3)

where the coefficients lij of L correspond to the
loading on variable i by factor j and F is a vector
with the unobservable underlying factors. Equa-
tion (1.3) corresponds to Equation (1.1) assuming
zero intercept (from a pricing theory standpoint,
this should be valid if we have a correct factor
model). We also assume that:

E[ε] = 0 Var[ε] = E[εεT] = �,

where � is a diagonal matrix of specific variances
in which the factors and the specific variances are
meant to be uncorrelated. Letting the covariance
matrix of the factors be � and taking the variance
of (1.3) gives:

Var[r] = L̄�̇L̄T + �̇ (1.4)

The principal components are those linear com-
binations that give the direction of maximum
variance in the sample such that they are uncor-
related with each other (orthogonal). The ith
principal component is given by:

fi = lTi r =
∑

lnirn i = 1, 2, . . . , N (1.5)

for which variances and covariances are:

Var[fi] = lTi Sli = λi i = 1, 2, . . . , N (1.6)

Cov[fi, fj] = lTi Slj i �= j (1.7)

and lTi li = 1, i = 1, 2, . . . , N. The loadings are
determined by the eigenvectors of S in Equa-
tion (1.5) and their variances in (1.6) equal the
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corresponding eigenvalues λi.2 The application
of this procedure using standardized returns in r
make S (in this notation) the correlation matrix.
For clarity we use P to denote the correlation
matrix.

Taking the eigenvalues–eigenvector pairs (e1, λ1),
(e2, λ2), . . . , (eN, λN), where λ1 ≥ λ2 ≥ · · · ≥
λN ≥ 0 and ej = [

e1,j, e2,j, . . . , eN,j

]T
of the

matrix P, we can re-write it as:

P = λ1e1e
T
1 + λ2e2e

T
2 + · · · + λNeNeT

N

= [e1 e2 . . . eN]

×




λ1 0 0 0

0 λ2 0 0

0 0
. . . 0

0 0 0 λN







eT
1

eT
2
...

eT
N




= L̄�̇L̄T. (1.8)

The decomposition in (1.8) fits exactly into Equa-
tion (1.4), taking � = 0 and noting that
Cov[fi, fj] = 0. This form yields an exact repre-
sentation of the covariance structure; however, a
great deal of the variability can be often explained
by only a few of the principal components without
losing much information.

The advantage of this procedure is that it can lead
to a very significant reduction of the number of
parameters to estimate. This can be implemented
by neglecting the effect of the smallest eigenval-
ues; hence, we can write Equation (1.8) as:

P = λ1e1e
T
1 + λ2e2e

T
2 + · · · + λK1eK1e

T
K1

= [
e1 e2 . . . eK1

]

×




λ1 0 0 0

0 λ2 0 0

0 0
. . . 0

0 0 0 λK1







eT
1

eT
2
...

eT
K1




= L�LT, (1.9)

where L is an N × K1 matrix with K1 < N. If
we now take into account the effect of the error
embedded in the approximation we get:

P ≈ L�LT + � (1.10)

This is equivalent to obliging the diagonal ele-
ments in the correlation matrix to be equal to
one. Note the correspondence of Equations (1.10)
and (1.2); both use a factor model to decompose
the matrix, but Equation (1.10) corresponds to a
correlation matrix given that we take r as stan-
dardized returns (zero mean and unit variance).

Bengtsson and Holst (2002) and Fujiwara et al.
(2006) also provide justification for the use of
PCA in a similar way, extracting principal compo-
nents to estimate expected correlation within MV
portfolio optimization. Fujiwara et al. (2006) find
that the realized reward-to-risk ratio of portfolios
based on the PCA method is higher than that of
the single-index and that the optimization gives
a practically reasonable asset allocation. Overall,
the main strength of the PCA approach at this
stage is that it enables the data to talk and to show
the underlying risk factors that govern most of
the variability of the assets at each point in time.
The PCA approach strongly contrasts with forced
reliance on the assumption that a particular factor
model is the true pricing model and reduces the
specification risk embedded in the factor-based
approach while keeping the sample risk reduction.

Furthermore, to reduce the specification risk to
the minimum, we use an objective criterion to
determine the number of factors in our estimation.

1.1.2 Choosing the appropriate number of
factors

Determining the appropriate number of factors
to structure the correlation matrix is critical to
the risk estimation when using PCA as a fac-
tor model. Several options, some with more
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theoretical justification than others, have been
proposed to make this determination.

Financial applications such as those of Laloux
et al. (2001), Bengtsson and Holst (2002),
Amenc and Martellini (2002), and Fujiwara et al.
(2006) provide justification for the use of a rule
derived from some explicit results from random
matrix theory (RMT) (Plerou et al., 2001; Plerou
et al., 1999; Laloux et al., 1998; Guhr, 2001;
Marchenko and Pastur, 1967). Within the cor-
relation matrix structure context, Fujiwara et al.
(2006) find that the error in the estimation of the
correlation matrix via RMT is more stable and
smaller than that of the sample, single-index, or
constant-correlation model.

The idea is to try to separate the real correla-
tion from the estimation error by comparing the
properties of the empirical correlation matrix with
known results for a completely random correla-
tion matrix. It has been shown that the asymptotic
density of eigenvalues of the correlation matrix of
strictly independent asset reads3:

f(λ) = T

2Nπ

√
(λ − λmax)(λ − λmin)

λ
, (1.11)

where

λmin ≤ λ ≤ λmax

and the minimum and the maximum eigenvalue
bounds are given by:

λmax
min = 1 + N

T
+2

√
N

T
. (1.12)

A conservative interpretation of this result to
design a systematic decision rule is to regard
as statistical noise all factors associated with an
eigenvalue lower than λmax.

1.2 Improved estimators of expected returns

Although we rely on statistics to extract meaning-
ful factor models for covariance estimation, they

are nearly useless in estimating expected returns,
since the data are extremely noisy (Britten-
Jones, 1999). Recognizing the difficulty of using
sample-based expected return estimates in portfo-
lio optimization, we follow Martellini (2008) in
using an economic relation to estimate expected
returns. In particular, we use an estimate of
the stock’s risk to proxy for a stock’s expected
returns. This approach is based on the princi-
ple that investors expect an additional return for
taking on more risk.

Although it seems reasonable to assume that there
is a risk-return trade-off, how risk should be mea-
sured must be addressed. Standard asset pricing
theories such as the capital asset pricing model
(Sharpe, 1964) and the arbitrage pricing theory
(Ross, 1976) imply that expected returns should
be positively related to systematic volatility, as
measured through a factor model that summa-
rizes individual stock return exposure with respect
to one or more rewarded risk factor(s). More
recently, a series of papers has focused on the
explanatory power of idiosyncratic, as opposed to
systematic, risk for the cross-section of expected
returns. Malkiel and Xu (2006), developing an
insight from Merton (1987), show that an inability
to hold the market portfolio, whatever the cause,
will force investors to look, to some degree, at
both total risk and market risk, so firms with
larger firm-specific risk must deliver higher aver-
age returns to compensate investors for holding
imperfectly diversified portfolios. That stocks
with high idiosyncratic risk earn higher returns
has also been confirmed in a number of recent
empirical studies (Tinic and West, 1986; Malkiel
and Xu, 1997, 2002).

Taken together, these findings suggest that total
risk should be positively related to expected
return. Most commonly, total risk is the volatility
of a stock’s returns. Martellini (2008) has investi-
gated the portfolio implications of these findings,
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and they have found that tangency portfolios con-
structed on the assumption that the cross-section
of excess expected returns could be approximated
by the cross-section of volatility posted better out-
of-sample risk-adjusted performance than their
market-cap-weighted counterparts.

In this paper, we extend the results in Martellini
(2008) to risk measures that take into account
higher-order moments. Theoretical models have
shown that, in exchange for higher skewness and
lower kurtosis of returns, investors are willing
to accept expected returns lower (and volatility
higher) than those of the mean–variance bench-
mark (Rubinstein, 1973; Kraus and Litzenberger,
1976). More specifically, skewness and kurto-
sis in individual stock returns (as opposed to
the skewness and kurtosis of aggregate portfo-
lios) have been shown to matter in several papers.
High skewness is associated with lower expected
returns in Barberis and Huang (2004), Brunner-
meier et al. (2005), and Mitton and Vorkink
(2007). The intuition behind this result is that
investors like to hold positively skewed portfolios.
The highest skewness is achieved by concentrat-
ing portfolios in a small number of stocks that
themselves have positively skewed returns. Thus
investors tend to be underdiversified and drive
up the price of stocks with high positive skew-
ness, which in turn reduces their future expected
returns. Stocks with negative skewness are rela-
tively unattractive and thus have low prices and
high returns. The preference for kurtosis is in the
sense that investors like low kurtosis and thus
expected returns should be positively related to
kurtosis. Boyer et al. (2009) and Conrad et al.
(2008) provide empirical evidence that individual
stocks’ skewness and kurtosis is indeed related to
future returns.

An alternative to direct consideration of the higher
moments of returns is to use a risk measure that
aggregates the different dimensions of risk. In

this line, Bali and Cakici (2004) show that future
returns on stocks are positively related to their
Value-at-Risk and Estrada (2000) and Chen et al.
(2009) show that there is a relationship between
downside risk and expected returns.

Our estimate of expected returns to construct
the tangency portfolio proxy uses such a down-
side risk measure, and, in particular, the stock’s
semi-deviation. The semi-deviation is a more
meaningful definition of risk than volatility, since
it takes into account only deviations below the
mean. We compute the semi-deviation of the
returns of each constituent SEM i with respect to
the average return µi of the ith stock as

SEM i =
√

E{min[ri,t − µi], 0}2,

where E(·) is the expectation operator computed
as the arithmetic average, min(x, y) the minimum
of x and y, and ri,t the return of stock i in week t.

To estimate expected returns, we follow the port-
folio sorting approach of Fama and French (1992).
That is, rather than attribute an expected return
to each stock, we sort stocks by their total risk
and form decile portfolios. We then attribute the
median total risk of stocks in that decile port-
folio to all stocks in the portfolio and use this
risk measure as an estimate of expected return.
The relationship between risk and returns derived
from these portfolio sorts provides an estimate of
expected returns.

It should be noted that, while our working
assumption is a positive risk-return trade-off in
the cross-section of expected stock returns, there
exists conflicting empirical evidence on the nature
of the risk-return relation depending on how risk
is defined. In particular, Ang et al. (2006, AHXZ
hereafter) find empirically that there is a neg-
ative link between stock-specific volatility and
expected returns. However, more recent studies
have examined these results and have found that
they do not withstand a range of robustness tests.
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For example, Bali and Cakici (2008) show that
the results in AHXZ break down when chang-
ing the weighting scheme applied to low volatility
and high volatility stocks in portfolio sorting exer-
cises, when changing the breakpoints to classify
stocks into low and high idiosyncratic volatility,
when changing the data frequency to estimate
idiosyncratic volatility, or when avoiding micro
caps stocks and highly illiquid stocks. Likewise,
Huang et al. (2010) show that the negative rela-
tion put forward byAHXZ does not hold when one
corrects for the effects of short term return rever-
sals. Also, AHXZ measure volatility over the past
month to examine how this is related to returns
over the next month. Their results therefore, are
not applicable to more long term holding periods
or calibration periods for measuring risk. Recent
papers have shown that when measuring stock-
specific volatility over longer horizons (3 years)
and using a time series model (EGARCH) to mea-
sure volatility, there is a positive link between
expected stock returns and stock-specific volatil-
ity in both the united states (Fu, 2009) and in
international stock markets (Brockmann et al.,
2009).

We should underline that the expected return
proxy used in our analysis is based on total
downside risk, not stock-specific volatility and
is thus not comparable in nature to the AHXZ
measure of risk. It should also be noted that
to decompose stock-specific and systematic risk
components the above-mentioned papers need to
specify an asset pricing model. In contrast, our
approach of using total risk is entirely model
free. Once we have computed the total risk mea-
sure, we simply work with the assumption of a
positive relation between total risk and expected
return without specifying a particular functional
form or model for this relation. In addition, our
expected return estimates are robust in the sense
that they rely on a relation between return and
risk that is a fundamental principle in financial

theory. We also refrain from estimating indi-
vidual expected returns, as we sort stocks into
groups with high and low expected returns, con-
sistent with cross-sectional asset pricing tests in
the empirical finance literature.

2 Implementing efficient indexation

We now turn to the implementation of portfolio
optimization with our robust input parameters,
with the objective of deriving a reliable proxy
for the tangency portfolio. This section describes
the set of data used in our tests. In addition,
practical implementation of the approach imposes
further constraints, which we consider here. For
example, our objective is to weight index con-
stituents more efficiently, so we aim to match
the actual constitution of the cap-weighted index
as closely as possible. In addition, we intro-
duce weight constraints and a method to control
portfolio turnover.

To test our approach to constructing proxies for
the tangency portfolio, we consider long-term
US stock market data from CRSP. We consider
the S&P 500 index and test whether we can
improve its risk-return efficiency by weighting
constituents differently than by their market cap.

We obtain the S&P 500 constituent lists directly
from CRSP, where one can see for each day
which stocks belong to the index. For the risk-free
rate, we use the ML US T-Bill 3M index from
Datastream, and we compute the corresponding
weekly returns. All equity returns time series are
weekly total returns (including reinvestment of
periodic payments such as dividends), as com-
puted by CRSP. The constitution of the S&P 500
is available from 1959.

We assess portfolios, rebalanced every quarter,
of all index constituents. The rebalancing is done
after the close of the first Friday of January, April,
July, and October. To estimate optimal weights,
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we use returns for the 2 years before rebalancing.
We select all constituents that are constituents of
the underlying index at the rebalancing. To con-
struct our index, we use the same constitution as
that of the cap-weighted index.

We find the efficient weights as the set of weights
that allow an investor to obtain the highest Sharpe
ratio, given the risk and return inputs and the
weight constraints. The constituent weights that
solve this optimization are the efficient weights
w* that will be used in the efficient index,
obtained with the following formula:

w∗ = arg max
w

w′µ√
w′�w

,

where µ is the vector of expected returns in excess
of the risk-free rate and � is the covariance matrix
for returns of these constituents. The efficient
weights lead to the highest expected returns per
unit of risk, given the expected excess returns
and given the covariance matrix for the index
constituents in question.

As described above, the covariance matrix is esti-
mated from a statistical factor model using prin-
cipal component analysis, whereas the expected
returns are estimated through a risk-return rela-
tion, in which we sort stocks by total downside
risk to group them into deciles according to
their expected returns. Each quarter, we use
the updated input parameters to derive optimal
weights, implement these optimal weights at
rebalancing and then hold the stocks until the next
quarter.

We impose the usual portfolio constraint that
weights have to sum to one. In addition, we
impose weight constraints that depend on the
number of constituents (N) in the index. We
impose an upper bound of λ/N and a lower
bound of 1/(λN), where λ is a flexibility param-
eter we set to two. Changing this parameter
has no qualitative effect on the results. These

constraints ensure that we include all index con-
stituent stocks and that we do not obtain any
negative weights that would lead to short sales.
An appealing side effect of imposing weight con-
straints is that, not unlike statistical shrinkage
techniques (Jagannathan and Ma, 2003), it makes
possible a better trade-off between specification
error and sampling error.

Although we wish to rebalance every quarter to
be able to update information when necessary, it
seems reasonable to rebalance the portfolio not at
fixed intervals but only when weights have under-
gone significant shifts. This approach is consistent
with insights from control techniques applied to
portfolio optimization to lower transaction costs
(Leland, 1999; El Bied et al., 2002). To achieve
lower turnover, we refrain from updating the opti-
mal weights if the average absolute change in
weights is less than 50% of the overall portfolio
value. To ensure that we match the constitution of
the underlying cap-weighted index, we continue
to update the constitution in quarters in which we
do not update the optimal weights. So exiting con-
stituents will be deleted and new constituents will
be included with the minimum weight (1/λN) at
rebalancing. The following table shows the result-
ing turnover statistics and provides an analysis
of indifference transaction costs. The table also
shows results for another practical issue, portfolio
concentration.

In addition to absolute turnover and to excess
turnover relative to the cap-weighted index,
Table 1 shows the impact this turnover would have
on the performance of the efficient portfolios.
Since transaction costs vary from one investor to
another, it is unreasonable to assume fixed trans-
action costs. Instead, we compute the indifference
level of transaction costs an investor would have
to pay if these costs were to offset completely the
difference in average returns compared to cap-
weighting. This indifference level is 13% for the
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Table 1 Turnover and concentration.

Index

Annual
one-way
turnover
(%)

Excess
turnover vs.
cap-weighted
(%)

Ann. return
difference
over cap-
weighting
(%)

Indifference
level of
transaction
costs
(%)

Average
effective
constituents
(%)

Effective
constituents
to nominal
constituents
(%)

Efficient index 23.10 18.41 2.40 13.06 382 76
Cap-weighted 4.69 0.00 — — 94 19

Note: The table shows the resulting turnover measures for portfolios that have been implemented using controlled reoptimization with
a threshold value of 50%. The table also shows the indifference transaction costs, the difference between annualized return and cap-
weighting divided by portfolio turnover. This measure indicates at which level (round-trip) transaction costs would neutralize the return
difference with cap-weighting. The table also indicates the effective number of constituents in the efficient index and in the cap-weighted
index, computed as the inverse of the sum of squared constituent weights. This measure is computed at the start of each quarter and
averaged over the entire period. The results are based on weekly return data from 01/1959 to 12/2008 for S&P 500 constituents.

efficiently weighted portfolio. In practice, it is
unlikely that any investor would pay costs of such
magnitude.

Also of interest to investors is portfolio concen-
tration. Indeed, it has been argued that one of
the main drawbacks of capitalization weighting
is excessive concentration in a few stocks with
high market capitalization. The argument is that
since few stocks will account for most of the
weight in the index the effective number of stocks
held in a cap-weighted index will be well below
the actual number of constituents. We follow
Strongin et al. (2000) in computing the effec-
tive number of stocks as the inverse of the sum
of squared portfolio weights. For the S&P 500
universe, the efficient weighting method leads to
portfolios with an average of 382 effective con-
stituents, whereas the cap-weighted index has
only 94 stocks effectively by this measure. Thus,
with efficiently weighted portfolios concentration
is considerably reduced.

3 Performance of efficient indexation

Now that we have described a method that con-
trols turnover and shown the feasibility of the
approach in terms of portfolio turnover and con-
centration, we turn to an analysis of the risk and

return properties of the strategy. As our approach
is an alternative to cap-weighted stock market
indices that is based on the exact same con-
stituents and changes only the weighting scheme,
risk and return statistics for the cap-weighted
index are shown for comparison. As the efficient
index and the cap-weighted index have exactly
the same constituents, the resulting portfolios
will show commonalities in risk and return. At
an annualized 5%, the tracking error of efficient
indexation is lower than that of the cap-weighted
index. This section looks first at long-term perfor-
mance and then at the consistency of performance
across market conditions.

3.1 Long-term risk and return

Both the absolute and the relative performance
of the strategy must be analyzed. In addition, it
is necessary to test whether the efficient weight-
ing method’s outperformance of capitalization
weighting is statistically significant and to assess
exposure to extreme risks and volatility. This sec-
tion does these analyzes for the full historical time
period, whereas the next section will focus on
performance in different market conditions.

Table 2 shows summary performance statistics.
For the average return, volatility and the Sharpe
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Table 2 Risk and return.

Index

Ann. average
return
(compounded)
(%)

Ann.
standard
deviation
(%)

Sharpe ratio
(com-
pounded)

Information
ratio

Tracking
error (%)

Efficient index 11.63 14.65 0.41 0.52 4.65
Cap-weighted 9.23 15.20 0.24 0.00 0.00
Difference (efficient – cap-weighted) 2.40 −0.55 0.17 — —
p-value for difference 0.14 6.04 0.04% — —

Note: The table shows risk and return statistics portfolios constructed with the same set of constituents as the cap-weighted index.
Rebalancing is quarterly subject to an optimal control of portfolio turnover (by setting the reoptimization threshold to 50%). Portfolios
are constructed by maximizing the Sharpe ratio given an expected return estimate and a covariance estimate. The expected return
estimate is set to the median total risk of stocks in the same decile when sorting by total risk. The covariance matrix is estimated using
an implicit factor model for stock returns. Weight constraints are set so that each stock’s weight is between 1/2N and 2/N, where N is
the number of index constituents. P-values for differences are computed using the paired t-test for the average, the F-test for volatility,
and a Jobson–Korkie test for the Sharpe ratio. The results are based on weekly return data from 01/1959 to 12/2008.

ratio, we report differences with respect to cap-
weighting and assess whether this difference is
statistically significant. It is important to assess
significance, as we base our conclusions on a lim-
ited amount of data, and any differences could, in
principle, be the result of random effects.

Table 2 shows that the efficient weighting of index
constituents leads to higher average returns, lower
volatility, and a higher Sharpe ratio. All these dif-
ferences are statistically significant at the 10%
level, whereas the difference in Sharpe ratios is
significant even at the 0.1% level. Given the data,
it is highly unlikely that the unobservable true per-
formance of efficient weighting was not different
from that of capitalization weighting. Economi-
cally, the performance difference is pronounced,
as the Sharpe ratio increases by about 70%.

The performance measures used above adjust
portfolio returns for absolute risk, i.e., for the vari-
ability in portfolio wealth without reference to an
external benchmark. Since the efficient weight-
ing procedure is an alternative to cap-weighted
indexing for investors seeking exposure to the
risk premium in equity markets, the standard
cap-weighted index is a useful benchmark. We

measure the performance of our index relative to
the cap-weighted benchmark by computing alpha
and beta from a single-factor analysis. This cor-
responds to a CAPM framework, in which the
cap-weighted index is taken as a proxy for the
market portfolio. Table 3 shows the performance
of the efficient indexation method once we adjust
for its exposure to market risk in the sense of
its beta with the cap-weighted index. To account
for other systematic factors which might explain
returns of the efficient index, we used the Fama–
French 3-Factor model. In addition to the market
beta, we thus assess exposures to the value fac-
tor (i.e., to the return difference between high and
low book-to-market ratio stocks) and to the small
cap factor (i.e., to the return difference between
high and low capitalization stock).

The results in the table show that for the S&P
500 universe the efficient indexation method sig-
nificantly outperforms the cap-weighted bench-
marks, since the intercept of the regression is
significant. The annualized alpha is on the same
order of magnitude as the annualized return differ-
ence in Table 2, suggesting that the higher returns
of the efficient indexation strategy are not caused
by greater exposure to market risk. The results in
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Table 3 Factor model analysis.

Ann. alpha Market-beta Size-beta Value-beta R-squared

CAPM Coefficient 2.92% 0.9177 91%
t-statistic 3.7 68.3
p-value 0.02% 0.00%

Fama–French 3-Factor Coefficient 0.72% 0.9989 0.0781 0.2916 94%
t-statistic 1.4 185.1 8.7 29.2
p-value 16.77% 0.00% 0.00% 0.00%

Note: The first panel of the table shows coefficient estimates from the regression of weekly returns of the efficient indexation
strategy on weekly returns of the cap-weighted index. The data are for the period from 01/1959 to 12/2008. The second panel shows
coefficient estimates from the regression of weekly returns of the efficient indexation strategy on and weekly Fama–French factors.
The data are for the period from 07/1963 to 12/2008. P-values are obtained using Newey–West robust standards that are consistent
in the case of heteroscedasticity and autocorrelation.

the second panel of Table 3 show that the alpha
becomes insignificant in the 3 factor model. At the
same time, the R-squared of the regression only
increases slightly, showing that the size and value
betas do not suffice to fully explain the return
variations of the efficient indexation strategy.

In spite of the favorable absolute and relative per-
formance of the efficient indexation method, it
is interesting to analyze if the strategy exposes
investors to other forms of risk. In particular, our
analysis has focused on measures that do not take
into account the presence of extreme risks. We
ask whether the greater risk-reward efficiency in
terms of the volatility of these indices comes at
the cost of a higher risk of extreme losses. We
first compute aggregate measures of extreme or
downside risk, notably Value-at-Risk and semi-
deviation. We compute Value-at-Risk to estimate
the worst loss an investor can expect to incur
over a weekly horizon with 95% confidence. Our
Value-at-Risk estimate follows Zangari (1996)
and takes into account not only the volatility but
also the skewness and kurtosis of the return dis-
tribution. Portfolio semi-deviation is computed
much as is the individual stock’s semi-deviation.

Table 4 shows standard downside risk measures
such as VaR and semideviation. In addition, the

table shows first, fifth, and tenth percentiles of
3 and 12 month trailing returns, i.e., the rolling
return that is exceeded in 99%, 95%, and 99%
of the sample. We can see that 12-month trail-
ing losses are considerably lower for the efficient
index than for the cap-weighted index. Three-
month trailing losses, VaR and semi-deviation for
the efficient index are broadly similar to those of
the cap-weighted index.

From the results in Table 4, we conclude that the
improvement in the volatility-adjusted return (the
higher Sharpe ratio) does not come at the cost of
higher downside risk. This result suggests that,
though we tend to overweight stocks with high
downside risk through the expected return esti-
mate, this risk is diversified away on the portfolio
level.

It should be noted that, we do not see the results
as evidence that efficient indexation reduces
extreme risk. In fact, reducing extreme risk is
not the objective of such an approach which
merely focuses on obtaining the best long-term
risk/reward trade-off. Our objective here was
simply to check whether improving risk/reward
efficiency in the sense of the Sharpe ratio comes
at the expense of increasing extreme risk, and the
evidence suggests that this is not the case.
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Table 4 Extreme risk.

3-month trailing return 12-month trailing return
95% value- Ann.
at-risk over semi- 1st 5th 10th 1st 5th 10th
one week deviation percentile percentile percentile percentile percentile percentile

Index (%) (%) (%) (%) (%) (%) (%) (%)

Efficient index 3.20 10.93 −21.89 −10.72 −6.57 −25.70 −14.21 −9.19
Cap-weighted 3.28 11.13 −20.99 −10.12 −6.45 −28.18 −16.86 −11.07

index

Note: The table shows different measures of downside risk for efficient indexation and cap-weighting. The 95% Value-at-Risk is
computed using a Cornish–Fisher expansion. Semi-deviation is the square-root of the second lower partial moment with respect to
the mean and annualized by multiplying with the square-root of 52. Three-month trailing returns are computed by compounding the
past 13 weeks of returns for each weekly observation, and 12-month trailing returns by compounding the past 52 weeks of returns.
The table shows percentiles for the distribution of the available sample of trailing returns. The results are based on weekly return data
from 01/1959 to 12/2008.

3.2 Efficient indexation versus Naïve
de-concentration

Table 1 shows that the efficient indexation strat-
egy leads to a portfolio that is considerably less
concentrated than its cap-weighted counterpart.
A different way to limit concentration would sim-
ply be to weight each stock equally. This naïve
form of de-concentration ignores any possibility
of portfolio optimization. It seems useful to com-
pare the performance of the efficient indexation
strategy and that of this naïve alternative. In fact,
if the performance of efficient indexation could
be attributed to a mere de-concentration effect,
we would expect the performance of the equal-
weighted strategy to be even stronger than that
of the efficient indexation strategy, as concentra-
tion is, by definition, lower for an equal-weighted
portfolio.

The equal-weighted portfolio is an appropriate
benchmark for comparison, as several papers
show that many alternative weighting mecha-
nisms do not outperform simple equal-weighted
portfolios. For example, DeMiguel et al. (2009)
find that, across a wide range of datasets,
the equal-weighting strategy is not consis-
tently outperformed by mean–variance optimized

portfolios including global minimum variance
portfolios. Similarly, Amenc et al. (2009) report
that equity indices that weight stocks by firm char-
acteristics do not outperform equally-weighted
indices. Therefore, using the equal-weighted
portfolio as reference provides a parsimonious
comparison of the performance of efficient index-
ation. Amenc et al. (2010) provide a performance
comparison of different alternative weighting
schemes, including efficient indexation.

Table 5 shows that efficient indexation based on
robust portfolio construction seems preferable to
a simple equal-weighting scheme. This suggests
that portfolio optimization with robust parame-
ter estimates, as introduced in Section 1, adds
more useful information than an equal-weighted
benchmark. The table below shows, in partic-
ular, that efficient indexation leads to higher
expected returns and lower volatility than its
equal-weighted counterpart. The tracking error
and turnover of the efficient indexation strat-
egy are also slightly lower than those of the
equal-weighted strategy.

The bottom line from Table 5 is that efficient
indexation leads to Sharpe and information ratios
considerably higher than does equal weighting.
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Table 5 Summary statistics: efficient indexation versus equal-weighting.

Ann.
average
return
(%)

Ann.
standard
deviation
(%)

Sharpe
ratio

Info
ratio

Tracking
error
(%)

Annual
one-way
turnover
(%)

Effective
constituents

Equal weighting 11.1 15.8 0.35 0.39 4.8 24.2 500
Efficient indexation 11.6 14.6 0.41 0.52 4.7 23.1 382

Note: The table shows risk and return statistics portfolios constructed with the same set of constituents as the cap-weighted index.
The efficient indexation method from above is compared to the equal-weighted portfolio with quarterly rebalancing that is based on
the same set of constituents. The results are based on weekly return data from 01/1959 to 12/2008.

That efficient indexation makes possible perfor-
mance superior to equal weighting, and with
a lower effective number of constituents, also
suggests that the efficient indexation method is
suitable for constituent universes that include
stocks that have low liquidity. As the effective
number of stocks of the efficient indexation strat-
egy is relatively low, it is possible to avoid holding
the least liquid stocks. In practice, then, transac-
tion and liquidity costs may be lower for efficient
indexation.

3.3 A closer look at the performance of efficient
indexation

The evidence provided above suggests that the
efficient indexation method greatly improves the
risk/return efficiency of cap-weighted indices. In
fact, Sharpe ratios are considerably higher than
those of cap-weighted indices, even though the
underlying constituents are identical. The analy-
sis above is based on long-term historical data. For
the investor, it is important that the improvement
in risk-reward efficiency be consistent. To deter-
mine whether it is, we provide an overview of how
efficient indexation fares in different time periods,
stock market regimes, and economic conditions.

The upper graph in Figure 1 shows the growth
over time of investments in the efficient index and
in the cap-weighted index. The plots for the two

constituent universes show that the return differ-
ence leads to spectacular differences in wealth
over long time periods, the simple result of
compounding.

For an idea about the consistency of the increase
in returns through efficient indexation, we also
plot the ratio of the portfolio wealth obtained with
efficient indexation to the wealth obtained by cap-
weighting the same stocks. The lower plot shows
the ratio of the wealth of an investor in the efficient
index to the wealth of an investor in the value-
weighted index at each point of time, assuming
that both investors start investing at the same date
and with the same amount. Thus the plot shows
how many dollars an investor in the efficient index
has for every dollar he would have had when
investing in the value-weighted index.

The graph shows that, over time, the effi-
cient index’s cumulative outperformance of the
cap-weighted index is considerable. Efficient
indexation does, however, underperform value-
weighting in the years from January 1996 to
December 1999. Wealth ratios for both indices
fall over this period, the time of the bull mar-
kets that led to the “tech bubble.” Except for
this period, the wealth ratio either increases or
is stable, suggesting that the method provides a
consistent return enhancement other than in the
period of the extremely bullish markets of the late
1990s.
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Figure 1 Growth of portfolio wealth.
The upper graph shows cumulative returns normalized to a starting value of one for efficient indexation and for cap-weighting. The lower
graph indicates the ratio of the solid line to the dotted line in the upper plot. The results are for the efficient indexation portfolios with
controlled reoptimization. The data have a weekly frequency and range from 01/1959 to 12/2008.

The long-term evolution of wealth highlights
average returns rather than risk and risk-adjusted
performance. We analyze performance statistics
over sub-samples for a more systematic picture
of the variations in performance by time period.
Table 6 shows the annualized return, volatility,
and Sharpe ratio for periods of a decade. We
divided the sample into nonoverlapping periods of
10 years, going backwards from December 2008.
We thus obtain five sub-periods of 10 years.

Table 6 shows that the Sharpe ratio of efficient
indexation is higher in every 10-year period but
that from 1989 to 1998. This confirms the under-
performance in bull markets observed in the
graphs on the growth of wealth. Interestingly,
the underperformance in bull markets suggests

that the performance of efficient indexation is, in
general, more stable than that of cap-weighting.
In addition, though the Sharpe ratio of efficient
indexation is lower than that of the cap-weighted
index in the bull markets of the 1990s, efficient
indexation is less volatile over this period.

It is useful to look directly at the dependence of
performance on cap-weighted market returns. We
sort all weekly observations by the returns of the
cap-weighted index and analyze the performance
in five groups of the data that correspond to differ-
ent ranges of return for the cap-weighted index.
The first group contains the weeks in the sample
during which the cap-weighted index has returns
that are below a negative 4%. The fifth group con-
tains the weeks in the sample that correspond to
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Table 6 Risk and return in different decades.

Ann. average return Ann. volatility Sharpe ratio

Decade

Cap-
weighting
(%)

Efficient
indexation
(%)

Cap-
weighting
(%)

Efficient
indexation
(%)

Cap-
weighting

Efficient
indexation

1999–2008 −1.22 3.47 18.98 18.04 −0.23 0.01
1989–1998 19.16 16.43 12.84 12.45 1.07 0.89
1979–1988 16.32 20.82 16.02 15.82 0.42 0.71
1959–1978 2.96 4.24 16.02 15.47 −0.20 −0.13
1959–1968 10.33 14.29 10.65 10.05 0.62 1.05

Note: The table shows risk and return statistics when dividing the sample into periods of 10 years. The results are
based on weekly return data from 01/1959 to 12/2008.

more than 4% returns for the cap-weighted index.
Computing the average weekly returns for each
group shows how the strategy depends on the
returns of the cap-weighted index.

Table 7 shows that efficient indexation has higher
average returns than cap-weighting in all the
ranges except the top two sub-samples, which
correspond to roughly 15% of observations with
the most bullish market conditions. The results
in Table 7 confirm, unsurprisingly, that efficient
indexation has lower returns than cap-weighting
bull markets. An intuitive explanation is that it
is extremely difficult to outperform the trend-
following strategy when markets continue to fol-
low the trend and the stocks with price increases
continue to go up. However, the dispersion of

Table 7 Dependence of returns on cap-weighted returns

Average weekly return (%)

Range of cap-weighted return below −4 (%) −4 to −2(%) −2 to 0(%) 0 to 2(%) 2 to 4(%) above 4(%)

Cap-weighted −5.85 −2.73 −0.89 0.93 2.74 5.52
Efficient indexation −5.48 −2.48 −0.74 0.94 2.54 4.78
Percentage of observations 2.64 9.16 31.16 42.51 11.65 2.87

Note: The table shows average returns computed for six sub-samples. The sub-samples are obtained by sorting the weekly observations
based on the weekly return of the cap-weighted index. The samples ranges were chosen to be one standard deviation of the cap-weighted
weekly data (∼ 2%). The results are based on weekly return data from 01/1959 to 12/2008.

efficient-weighted portfolio returns across quin-
tiles is also lower, again suggesting more stability.

Conditioning on the cap-weighted return does not
provide a complete characterization of varying
market conditions. For a look at economic condi-
tions in a broader sense, we repeat the analysis of
Table 7, in which we divided the sample into sub-
samples, and computed performance statistics.
This time, we sort the sample into sub-samples
according to the prevailing economic conditions.
To characterize economic conditions, we use two
variables. The first is a recession indicator for the
US economy, which we obtain from the NBER.
The second is implied volatility, computed by the
CBOE based on option prices for index options
written on the S&P index.
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Table 8 Risk and return in recessions and expansions.

Ann. average return Ann. volatility Sharpe ratio

Cap- Efficient Cap- Efficient Cap- Efficient
Business cycle weighting (%) indexation (%) weighting (%) indexation (%) weighting indexation

Recessions −1.64 2.26 22.85 22.29 −0.37 −0.20
Expansions 11.19 13.30 13.47 12.92 0.43 0.61

Note: The table shows risk and return statistics computed for two sub-samples. The sub-samples are obtained by sorting the weekly
observations based on a recession indicator for that week. The recession indicator is obtained from NBER dates for peaks and troughs
of the business cycle. The results are based on weekly return data from 01/1959 to 12/2008.

Table 8 shows results separately for recession-
ary and expansionary periods. The results show
that both capitalization weighting and efficient
indexation fare much better in expansions than
in recessions. In recessions, average returns are
lower and volatility of returns is higher. In both
stages of the business cycle, efficient indexation
provides higher average returns, lower volatility,
and thus higher Sharpe ratios.

Another useful conditioning variable is implied
volatility. Although the recession variable used
above tells us something about the realization
of economic variables, option-implied volatility
directly captures investor uncertainty. The advan-
tage of using option-implied volatility rather than
realized volatility is that we can measure implied
volatility precisely at a weekly frequency. In addi-
tion, implied volatility, which Whaley (2000)
has described as a “fear gauge”, directly reflects

Table 9 Risk and return in times of high uncertainty and low uncertainty.

Ann. average return Ann. volatility Sharpe ratio

Implied volatility Cap- Efficient Cap- Efficient Cap- Efficient
regime weighting (%) indexation (%) weighting (%) indexation (%) weighting indexation

High volatility 8.90 10.99 15.40 14.61 0.18 0.34
Low volatility 6.22 10.03 11.88 11.83 0.03 0.36

Note: The table shows risk and return statistics computed for two sub-samples of equal size. The sub-samples are obtained by sorting
the weekly observations based on the value of the corresponding implied volatility index for that week. The median level of volatility is
used to separate the two samples. The data for implied volatility indices start on 03/01/1986 (VXO index) and end on 26/12/2008.

investor’s instantaneous beliefs and preferences
rather than past realizations. Table 9 repeats
the analysis from the previous table. The dif-
ference is that the sub-samples are now formed
according to volatility regimes. Data on implied
volatility indices are available only from 1986
for the S&P index. We divide the data available
since 1986 into one half that corresponds to high
volatility weeks and another half to low volatility
weeks.

As it does in both recessions and periods of
growth, efficient indexation improves risk-return
efficiency in both times of great uncertainty and
times of low uncertainty. Its advantage over capi-
talization weighting in terms of reduced volatility
is most pronounced in times of great uncertainty,
suggesting that efficiently weighted portfolios
provide risk reduction benefits precisely when
they are most needed.
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In general, when the performance of our indexing
method conditional on time, market conditions or
economic conditions is analyzed, the improve-
ments in risk-reward efficiency are confirmed. In
fact, the performance of efficient indexation is
extremely robust, regardless of the time period,
point on the business cycle, or degree of uncer-
tainty. When returns in rising and falling markets
are analyzed, we find that efficient indexation lags
capitalization weighting in pronounced bull mar-
kets, as in the late 1990s. From an investor’s
perspective, however, underperforming capital-
ization weighting when it returns 20% or more
per year may be a risk worth taking in exchange
for greater average efficiency.

4 International evidence

Although the results obtained for post-war US
data suggest that the improvement in efficiency is
highly significant both statistically and economi-
cally, it may be that these results are specific to US
data. So it is important to gather evidence on how
efficient indexation fares internationally. Since it
is more challenging to obtain accurate data over
long time periods for international markets, we
analyze indices only for countries or regions with
the largest stock market capitalizations and we

Table 10 Risk and return in different markets around the world.

Ann. average return Ann. std. dev. Sharpe ratio

Efficient Value Diff. Efficient Value Diff. Efficient Value
index (%) weighted (%) (%) index (%) weighted (%) (%) index weighted Diff.

USA 5.60 2.77 2.83 20.42 19.03 1.39 0.15 0.01 0.14
Eurobloc 7.48 4.19 3.30 18.61 21.40 −2.79 0.24 0.05 0.18
UK 9.66 5.44 4.23 19.65 19.43 0.22 0.27 0.06 0.21
Asia 17.19 15.80 1.40 21.36 23.83 −2.47 0.69 0.56 0.13
Japan 5.85 3.01 2.84 19.04 21.30 −2.26 0.30 0.13 0.16

Note: The table shows risk and return statistics computed for efficient indexation and capitalization weighting applied to stock market
index constituents in five regions. The statistics are based on daily returns data from 23/12/2002 to 18/09/2009.

concentrate on a recent time period for which data
are available.

We apply the efficient indexation method with
the same parameters as above to the constituents
of the FTSE All World index from the follow-
ing countries or regions: United States, Eurobloc,
United Kingdom, developed Asia-Pacific ex
Japan (including stocks from Australia, Hong
Kong, New Zealand, and Singapore), and Japan.
For these indices, we obtain daily constituent
lists and constituent-level return data for a period
of approximately 7 years (from 23/12/2002 to
18/09/2009). Table 10 shows the risk and return
statistics obtained through efficient indexation
based on these constituents and compares them
to the corresponding statistics of the FTSE All
World indices that weight constituent stocks by
(free-float-adjusted) market capitalization.

The results in Table 10 show that risk/return effi-
ciency in terms of the Sharpe ratio is improved
considerably for all five indices. In addition, the
improvement is actually quite similar across the
five indices, with Sharpe ratios approximately
0.15 higher than those of the cap-weighted index.
When the results for the four international indices
and for the US index are compared, it is clear
that the method works slightly better in the other
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datasets, except perhaps in the Asia Pacific index.
It is interesting to note that the Asia Pacific index
had extremely high returns of more than 15% over
the period, compared to returns of less than 6%
for all other cap-weighted indices. Thus, the lesser
improvement of the Sharpe ratio through efficient
indexation in this dataset is actually coherent with
the observation in the sub-sample analysis for the
long-term US data, where it was found that, in
strong bull markets, efficient indexation does not
improve on capitalization weighting as much as
it does in other market conditions.

In general, analysis of international data suggests
that our results are not specific to US data, as
the method yields similar results in stock markets
around the world.

5 Conclusion

Evidence abounds of the inefficiency of cap-
weighted indices. Currently available alternatives
may well owe their success to that inefficiency,
but, surprisingly, they do not explicitly address
this problem. Characteristics-based indices, for
example, attempt to be more representative of
the economy by weighting stocks by each com-
pany’s economic footprint. Their goal is not to
weight stocks so as to improve risk-return effi-
ciency. The approach described here, on the other
hand, takes the investor’s perspective into account
and makes risk-return efficiency an explicit goal.
Input parameters throw up a major concep-
tual obstacle to constructing efficient portfolios,
as estimation error may weaken optimization
results. From a practical standpoint, optimiza-
tion methods may lead to high turnover and
thus to transaction costs that wipe out favorable
performance. In this paper, we draw on the aca-
demic literature to provide solutions to both the
parameter estimation problem and the turnover
problem. Our main contribution is to provide a
novel approach, focusing on efficiency, to equity

indexation; efficiency, after all, was arguably
the motivation for the creation of index funds
drawing on insights from the CAPM in the first
place.

Our implementation of the fundamental insight
of modern portfolio theory, that investors should
hold the tangency portfolio, is based on robust
estimates of risk and return parameters. To obtain
robust parameter estimates for the comovements
of stock returns, we use a multifactor model based
on principal component analysis. For expected
returns, we use the insight that there is a risk-
return trade-off and generate estimates from a
suitably designed risk measure that involves not
only average risk but also higher moment risk,
following the evidence of the link between down-
side risk and expected returns provided by Estrada
(2000) and Chen et al. (2009), as well as the evi-
dence of the importance of total risk for portfolio
construction in Martellini (2008). Out of prac-
tical concerns, we also introduce a procedure,
inspired by optimal control theory (Leland, 1999),
to control turnover and transaction costs.

The empirical tests described in this paper show
that this procedure allows us to generate efficient
indices with out-of-sample Sharpe ratios consid-
erably higher than those of their capitalization-
weighted counterparts. In addition, performance
is consistent across different business cycles,
volatility regimes, and time periods. Lower risk-
return efficiency occurs only in the extreme bull
markets of the late 1990s. Even in this period,
efficient indexation posted lower volatility than
capitalization weighting, and expected returns
were lower when the cap-weighted indices were
returning in excess of 20% a year. It should also be
kept in mind that, unlike that of other index con-
struction methods that do not weight constituents
by market capitalization, the performance of the
method can be put down entirely to a different
method of weighting constituents.
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On the whole, when the evidence from post-war
US data is taken into account, the differences in
the efficiency of value-weighted indexation and
efficient indexation (and efficient indexation is
more efficient) are statistically significant. The
increase in risk-return efficiency is similar when
the method is applied to international stock mar-
ket indices. In general, efficient indexation leads
to an economically significant increase in effi-
ciency for investors seeking exposure to the equity
risk premium.

Notes
1 See Goltz and Le Sourd (2009) for a literature review.
2 For a proof see Johnson and Wichern (1992).
3 See Plerou et al. (2001).
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