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S U R V E Y S A N D C R O S S O V E R S

THE LIBOR/SABR MARKET MODELS: A CRITICAL REVIEW
Sanjay K. Nawalkha∗

This paper reviews the LIBOR market model (LMM) and the LMM-SABR model. While a plethora
of interest rate models, such as fundamental models, single-plus models, double-plus models, and
triple-plus models, can be used for valuation of plain vanilla derivatives, only a few models such
as the LMM and the LMM-SABR have been proposed as models that can hedge plain vanilla
derivatives as well as value complex interest rate derivatives. However, given that LMM and
LMM-SABR models are triple-plus models, they are calibrated to market prices by allowing time-
inhomogeneous volatilities, and by changing numerous model inputs period by period. Changing
the model period by period and using time-inhomogeneous volatilities make risk-return analysis
impossible under the physical measure. Further, this paper demonstrates that the LMM-SABR
model is based on the highly questionable assumption of zero drifts for the volatility processes (under
the forward rate specific measures), which has no economic justification, and can lead to explosive
behavior for volatilities. We suggest high-dimensional affine and quadratic models that use fast
analytical approximations (such as the Fourier inversion method and the cumulant expansion
method) for pricing caps and swaptions, as alternatives to the LMM and the LMM-SABR model.

1 Introduction

Over the past few years, the stochastic volatility-
based SABR model, proposed by Hagan et al.
(2002), has become a competing market standard
to the LIBOR market model (LMM) for pricing
plain vanilla interest rate derivatives such as caps
and swaptions. Rebonato and White (2009) and
Rebonato et al. (2009) generalize the SABR model

∗Associate Professor of Finance, Isenberg School of Man-
agement, University of Massachusetts, Amherst, MA 01002,
USA.

using a stochastic volatility extension of the LMM
with a common numeraire, such that the new model
called the LMM-SABR model can be used for pric-
ing a variety of interest rate derivatives. This paper
provides a critical review of both the LMM and
the LMM-SABR model using the new taxonomy
of term structure models given by Nawalkha, Beli-
aeva, and Soto (NBS) (2007, 2009). Under the new
taxonomy, all term structure models (TSMs) are
classified into one of the following four categories:

(i) Fundamental TSMs (i.e., preference-depen-
dent time-homogeneous models),
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(ii) Single-plus models (i.e., preference-free time-
homogeneous models),

(iii) Double-plus models (i.e., preference-free
models with time-inhomogeneous drifts for
the state variable processes and time-
homogeneous bond return volatilities, that fit
the initially observed bond prices),

(iv) Triple-plus models (i.e., preference-free models
with time-inhomogeneous drifts for the state
variable processes, and time-inhomogeneous
bond return volatilities, that exactly fit both
the initially observed bond prices and initially
observed prices of a chosen set of plain vanilla
interest rate derivatives).

Single-plus models have one extra degree of freedom
over fundamental models, as the former mod-
els are preference-free, while the later models are
preference-dependent. Double-plus models have
two extra degrees of freedom over fundamental
models, as these models are not only preference-
free, but also allow a perfect fit with the initially
given bond prices. However, moving from single-
plus to double-plus exposes these models to some
degree of smoothing (defined as fitting models to
arbitrary time dependencies without any economic
rationale), even though this comes with the advan-
tage of perfectly fitting the initially given bond
prices. The triple-plus models have three degrees of
freedom over fundamental models. These models
are preference-free, allow a perfect fit with ini-
tially given bond prices, and allow a perfect fit
with initially given prices of plain vanilla deriva-
tives. However, triple-plus models are exposed
to two sources of time-inhomogeneity, one of
them being the time-inhomogeneous evolution of
volatilities.

As argued in this paper, the popular versions of
the LMM and the LMM-SABR model are triple-
plus models, exposing these models to the dangers
of smoothing. Though double-plus versions of the
LMM and the LMM-SABR model can be derived,

Rebonato (2002), Brigo and Mercurio (2006), and
Rebonato et al. (2009) recommend triple-plus ver-
sions of these models to exactly fit the cross-section
of plain-vanilla derivatives. Hence, despite becom-
ing industry benchmarks, the triple-plus features
of the LMM and LMM-SABR model raise serious
concerns about their reliability over time.

This second section of this paper begins with a
review of the LMM. We focus mainly on the LFM
(i.e., Lognormal forward Libor model) version of
the LMM model and show how to derive this
model with a single numeraire. The third section
of this paper considers various extensions of the
LMM that can explain the volatility smile in the
caps market, including the CEV and displaced-
diffusion extensions for explaining a monotonic
smile, and the LLM-SABR extension for explaining
the non-monotonic smile.

The fourth section provides a critique of both the
LMM and the LMM-SABR model. The critique
focuses on two important issues. First, we focus
on the assumption of zero drifts for the volatil-
ity processes under the LMM-SABR model. This
assumption is inconsistent with economic funda-
mentals and is shown to be the main weakness
of the LMM-SABR model. Second, we evaluate
the usefulness of the LMM and the LMM-SABR
model from the perspective of a partially hedged
trader or an investor/speculator who must evalu-
ate risk-return trade-offs. We show that due to the
nature of calibrations used under the LMM and
the LMM-SABR model, it is virtually impossi-
ble to perform risk-return analysis, which requires
information from the physical measure.

The final section of this paper recommends high-
dimensional affine and quadratic models that
use fast analytical approximations (such as the
Fourier inversion method and the cumulant expan-
sion method) for pricing caps and swaptions, as
alternatives to the LMM and the LMM-SABR
model.
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2 The LIBOR Market Model

The LMM model was discovered by Brace, Gatarek,
and Musiela (1997), and was initially referred to
as the BGM model by practitioners. However,
Miltersen et al. (1997) discovered this model inde-
pendently, and Jamshidian (1997) also contributed
significantly to its initial development. To reflect
the contribution of multiple authors, many prac-
titioners including Rebonato (2002) renamed this
model as the Libor market model or the LMM in
abbreviated form. The two commonly used ver-
sions of the LMM are the lognormal forward Libor
model (LFM) for pricing caps, and the lognormal
forward swap model (LSM) for pricing swaptions.
The LFM assumes that the discrete forward Libor
rate follows a lognormal distribution under its own
numeraire, while the LSM assumes that the discrete
forward swap rate follows a lognormal distribu-
tion under the swap numeraire. Though the two
assumptions are theoretically inconsistent, they lead
to small discrepancies in calibrations using realis-
tic parameterizations. This section also derives a
joint framework by deriving the LFM using a sin-
gle numeraire, which leads to exact formulas for
pricing caps, and approximate formulas for pricing
swaptions. A variety of specifications of instanta-
neous volatilities and correlations are considered for
the LFM with a single numeraire, consistent with
the double-plus and the triple-plus versions of this
model.

2.1 The LFM

Consider the relationship between the discrete
Libor rate L(Ti , Ti+1) for the term Ui = Ti+1−Ti ,
and the zero-coupon bond price P(Ti , Ti+1), given
as follows:

1 + L(Ti , Ti+1)Ûi = 1

P(Ti , Ti+1)
(1)

where t ≤ T0 < T1 < T2 < · · · < Tn is the
timeline, and Ûi is the accrual factor for the period

Ti to Ti+1, calculated using actual/360 day-count
basis.

The time t discrete forward rate for the term Ui =
Ti+1 − Ti , is related to the price ratio of two zero-
coupon bonds maturing at times Ti and Ti+1 as
follows:

1 + f (t , Ti , Ti+1)Ûi = P(t , Ti)

P(t , Ti+1)
(2)

The forward rate converges to the future Libor rate
at time Ti , or:

f (Ti , Ti , Ti+1) = L(Ti , Ti+1) (3)

Equation (2) can be rewritten as follows:

f (t , Ti , Ti+1)P(t , Ti+1)

= 1

Ûi
(P(t , Ti) − P(t , Ti+1)) (4)

The expression f (t , Ti , Ti+1)P(t , Ti+1) is equal to a
constant times the difference between zero-coupon
bond prices maturing at dates Ti and Ti+1. Hence,
the expression f (t , Ti , Ti+1)P(t , Ti+1) gives the
price of a traded asset. Now, consider a non-dividend
paying, positive valued numeraire asset with a price
x(t ). Under absence of arbitrage, an equivalent mar-
tingale measure exists corresponding to the asset
x(t ), such that the ratio of the price of any traded
asset to the price of asset x(t ) is a martingale under
this measure. Hence, the process,

y(t ) = f (t , Ti , Ti+1)P(t , Ti+1)

x(t )
(5)

must have a zero-drift under an equivalent martin-
gale measure corresponding to the numeraire asset
x(t ). If x(t ) = P(t , Ti+1), then f (t , Ti , Ti+1) =
[f (t , Ti , Ti+1)P(t , Ti+1)]/P(t , Ti+1) is a martin-
gale under the equivalent measure defined with
respect to the numeraire P(t , Ti+1). The equivalent
measure with respect to the numeraire P(t , Ti+1)
is also called the forward measure defined with
respect to the maturity Ti+1. Since f (t , Ti , Ti+1)
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is a martingale under this forward measure, the
stochastic process of f (t , Ti , Ti+1) has zero drift
under this measure. The LFM specifies the follow-
ing zero-drift stochastic process for f (t , Ti , Ti+1)
under this forward measure:

df (t , Ti , Ti+1)

f (t , Ti , Ti+1)
= σi(t )dZi(t ) (6)

where dZi(t ) is a Wiener process under the forward
measure P̃ i defined with respect to the numeraire
asset P(t , Ti+1), and it σi(t ) measures the volatil-
ity of the forward rate process. The volatility can
depend upon time, and various types of time-
dependent volatility functions that are considered
later in this paper. Using Ito’s lemma, the stochastic
process of the logarithm of the forward rate is given
as follows:

d ln f (t , Ti , Ti+1) = −σ2
i (t )

2
dt + σi(t )dZi(t ) (7)

The stochastic integral of the above equation can be
given as follows. For all 0 ≤ t ≤ Ti ,

ln f (t , Ti , Ti+1)

= ln f (0, Ti , Ti+1) −
∫ t

0

σ2
i (v)

2
dv

+
∫ t

0
σi(v)dZi(v) (8)

Since the volatility function σi(t ) is deterministic,
the logarithm of forward rates is normally dis-
tributed, implying that the forward rate is lognor-
mally distributed. For t = Ti , the above equation
implies that the future Libor rate L(Ti , Ti+1) =
f (Ti , Ti , Ti+1), is also lognormally distributed.
This explains why this model is called the lognor-
mal forward Libor model, or the LFM. Though
each forward rate is lognormally distributed under
its own forward measure, it is not lognormally dis-
tributed under any arbitrary forward measure. The
implications of this observation are addressed later
in this paper.

The lognormal forward rate process provides a
theoretical justification for the widely used Black
formula for caplets. To see this, consider the Black
formula for pricing caplets, with the payoff of the
ith caplet at time Ti+1 is defined as follows:

Caplet Payoff at Ti+1

= F × Ûi × max [L(Ti , Ti+1) − Ki , 0] (9)

where, F is the notional value of the caplet, and Ki
is the caplet strike rate. Even though the payment
is made at time Ti+1, the amount to be paid is
known with certainty at time Ti , and hence, the
option expires at time Ti . The Black formula for
the time t price of the ith caplet is given as follows:

PCapleti
(t ) = F × Ûi × P(t , Ti+1){f (t , Ti , Ti+1)

× N (d1,i) − KiN (d2,i)} (10)

where,

d1,i = ln (f (t , Ti , Ti+1)/Ki) + ϑ2
i (Ti − t )/2

ϑi
√

Ti − t

d2,i = ln (f (t , Ti , Ti+1)/Ki) − ϑ2
i (Ti − t )/2

ϑi
√

Ti − t

where ϑi is the Black implied volatility of the
caplet, assumed to be a constant. Though the
above formula was initially developed using heuris-
tic arguments based upon Black’s (1976) option
formula, the forward rate process given in equa-
tion (6) provides a theoretical justification for using
this formula. To see this note that the forward rate
f (t , Ti , Ti+1) follows a martingale under the for-
ward measure (see equation (6)), and hence, the
time t price of the caplet can be obtained by solv-
ing the expectation of the caplet payoff given by
equation (9) as follows:

PCapleti
(t ) = F × Ûi × P(t , Ti+1)

× E i
t ( max [L(Ti , Ti+1) − Ki , 0])

(11)
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where the expectation is taken under the forward
measure associated with the numeraire P(t , Ti+1).
It can be easily verified that solving the above
expectation gives the same caplet price defined in
equation (10), but with the following definition of
the Black implied volatility:

ϑi =
√

1

Ti − t

∫ Ti

t
σ2

i (u)du (12)

Hence, the widely used Black caplet price formula
is theoretically valid under the LFM. The attrac-
tive feature about equation (12) is that it provides
traders with a simple and intuitive definition of
Black implied volatility, given as the square root
of the average variance of the percentage changes in
the forward rate, over the period t to Ti (also called
the “root mean square volatility” of forward rates).

2.2 Multiple factor LFM under a single numeraire

Since individual caplets comprising the cap can
be priced using different numeraires, the lognor-
mal assumption can be maintained for different
forward rates (see equation (6)) for pricing caps.
However, swaptions and coupon bond options rep-
resent options on portfolios (and not portfolios of
options, like caps), and hence the joint stochas-
tic evolution of different forward rates must be
modeled for pricing these instruments. Model-
ing the joint evolution of forward rates requires
that all forward rate processes be measured under
a single forward measure corresponding to a sin-
gle numeraire asset. As we show in the following,
using a single forward measure allows only a spe-
cific forward rate (corresponding to this measure)
to be distributed lognormally. All other forward
rates are not distributed lognormally and do not
have known densities. Hence swaptions must be
priced either by using Monte Carlo simulations or
by using approximate analytical solutions under the
multifactor LFM.

To allow for a single numeraire, redefine the forward
rate process given in equation (6), under the forward
measure P̃k with a non-zero drift as follows:

df (t , Ti , Ti+1)

f (t , Ti , Ti+1)
= µk

i (t )dt + σi(t )dZ k
i (t ) (13)

The above equation defines Wiener processes
dZ k

i (t ) corresponding to the stochastic processes
of different forward rates f (t , Ti , Ti+1), for i =
0, 1, . . . , n − 1, under a single numeraire asset
P(t , Tk+1). The generalized notation in the above
also redefines the Wiener process dZi(t ) corre-
sponding to the stochastic process of the ith forward
rate in equation (6), as dZ i

i (t ). The relationship
between dZ k

i (t ) and dZ i
i (t ) is given as:

dZ k
i (t ) = dZ i

i (t ) − (µk
i (t )/σi(t ))dt (14)

In general, any zero-coupon bond of maturity Tk+1,
can serve as the numeraire. However, in order to
have the numeraire “alive” for pricing derivatives
with all maturities, the zero-coupon bond with the
longest maturity date Tn can be chosen.

Though the drift of the ith forward rate pro-
cess f (t , Ti , Ti+1) is zero under its own numeraire
P(t , Ti+1) and it is non-zero under the numeraire
P(t , Tk+1), with i �= k. Mathematically, this can
be stated as:

µk
i (t ) �= 0, for i �= k

µk
i (t ) = µi

i(t ) = 0, for i = k
(15)

The solution forµk
i (t ) when i �= k, can be obtained

as follows. Let the numeraire asset in equation (5)
be given as x(t ) = P(t , Tk+1). Then in absence of
arbitrage, an equivalent measure must exist under
which y(t ) process in equation (5) is a martingale,
or:

E k(dy(t )) = 0 (16)

where,

y(t ) = f (t , Ti , Ti+1)P(t , Ti+1)

P(t , Tk+1)
(17)

THIRD QUARTER 2010 JOURNAL OF INVESTMENT MANAGEMENT

Not for Distribution



98 SANJAY K. NAWALKHA

The above equation can be simplified under three
different cases as follows:

For i > k,

y(t ) = f (t , Ti , Ti+1) × P(t , Tk+2)

P(t , Tk+1)

× P(t , Tk+3)

P(t , Tk+2)
× · · · × P(t , Ti+1)

P(t , Ti)

= f (t , Ti , Ti+1)∏i
j=k+1 (1 + f (t , Tj , Tj+1)Ûj)

(18)

For i < k,

y(t ) = f (t , Ti , Ti+1) × P(t , Ti+1)

P(t , Ti+2)

× P(t , Ti+2)

P(t , Ti+3)
× · · · × P(t , Tk)

P(t , Tk+1)

= f (t , Ti , Ti+1)
k∏

j=i+1

(1 + f (t , Tj , Tj+1)Ûj)

(19)

For i = k,

y(t ) = f (t , Ti , Ti+1) (20)

Using Ito’s lemma on the above three equations to
get the stochastic differential of y(t ), substituting
equations (6) and (14) (under the generalized nota-
tion, dZi(t ) = dZ i

i (t )), and then equating the
expectation of dy(t ) to zero using equation (16)
gives the solutions of the drift terms under the three
different cases as follows:

µk
i (t ) = σi(t )

i∑
j=k+1

σj(t )ρij(t )f (t , Tj , Tj+1)Ûj

(1 + f (t , Tj , Tj+1)Ûj)
,

for i > k

µk
i (t ) = −σi(t )

k∑
j=i+1

σj(t )ρij(t )f (t , Tj , Tj+1)Ûj

(1 + f (t , Tj , Tj+1)Ûj)
,

for i < k

µk
i (t ) = µi

i(t ) = 0, for i = k

(21)

where ρij(t ) gives the correlation between the
changes in the ith and jth forward rates defined
as follows:1

ρij(t )dt = dZi(t )dZj(t ) (22)

Since the quantity f (t , Tj , Tj+1)Ûj/(1 + f (t , Tj ,
Tj+1)Ûj) is always between 0 and 1, and
σi(t ) and ρij(t ) are bounded, the drifts in
equation (21) remain bounded. Hence, the
change of measure in equation (14) satisfies the
Novikov condition of the Girsanov theorem,
and all interest rate derivatives can be priced
in an arbitrage-free manner using the numeraire
P(t , Tk+1).

However, the drifts under the single numeraire
are no longer deterministic and depend upon the
current values of the forward rates. This implies
that the LFM does not have lognormally dis-
tributed forward rates under a single numeraire,
even though each forward rate is lognormally
distributed under its own numeraire. The drift
specification in equation (21) also makes the for-
ward rate process non-Markovian. Further, since
this drift specification does not allow a known
distribution function for the forward rates, ana-
lytical solutions cannot be obtained for inter-
est rate derivatives that require modeling of the
joint evolution of multiple forward rate processes
under a single numeraire (e.g., swaptions and
many exotic interest rate derivatives, except plain-
vanilla caps). In absence of analytical solutions,
these derivatives may be solved using Monte Carlo
simulations.

Finally, Hull and White (1999) and Rebonato
(2002) have shown that an approximation of the
Black formula for swaptions (known as the LSM
model), allows pricing swaptions under the multi-
factor LFM with a single numeraire. This approx-
imation is not only easy to compute, but it is
also quite accurate. Since most exotic interest rate
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products are priced off the price curves of caps and
swaptions, having a single framework for pricing
these vanilla products is quite useful. The details of
this approximation are summarized by Nawalkha
et al. (2007).

2.3 Specifying volatilities and correlations

There are two main problems associated with the
specification of forward rate volatilities under the
LIBOR market model (LMM) (i.e., the general
model inclusive of both LFM and LSM). The
first problem is very general and does not depend
upon the chosen form of the volatility functions.
This problem is inherent to the very structure
of LMM, and is a consequence of the inabil-
ity of the LMM to allow significant humps in
the Black implied volatilities, regardless of the
choice of forward rate volatility functions. The
second problem is specific to the particular func-
tional forms chosen for forward rate volatilities.
Since the specification of forward rate volatili-
ties under the LMM is designed to perfectly fit
a given set of plan vanilla derivatives—such as
a sequence of caps with increasing maturities—
this requirement leads to time-inhomogeneous
volatilities. We consider both these problems in
this section. In the final part of this section,
we outline some parameterizations of the cor-
relation structure of forward rate changes given
by Schoenmakers and Coffey (2003) and Doust
(2007).

2.3.1 Forward rate volatilities: A general
problem

Using the time zero definition of Black implied
volatilities in equation (12), and rearranging terms
we get:

ϑ2
i Ti =

∫ Ti

0
σ2

i (u)du (23)

Taking the partial derivative of the left-hand side of
the above equation we get:

∂(ϑ2
i Ti)

∂Ti
= 2ϑi

∂ϑi

∂Ti
Ti + ϑ2

i (24)

From the above equation it follows that:

IF
∂ϑi

∂Ti
< − ϑi

2Ti
(25)

THEN
∂(ϑ2

i Ti)

∂Ti
< 0 (26)

It is well known that Black implied volatility func-
tionϑi is humped under normal market conditions,
and hence for a range of maturities (generally, some-
where after 1.5 and 2.5 years), the partial derivative
∂ϑi/∂Ti is less than zero. However, as shown by
Rebonato (2002), very often this partial derivative
is significantly negative such that the condition in
equation (25) is satisfied and hence the inequality
in equation (26) holds.

Now, assume that the forward rate volatility is time-
homogenous, such that:

σi(t ) = h(Ti − t ) (27)

The time-homogeneity assumption implies that:

ϑ2
i Ti =

∫ Ti

0
σ2

i (u)du

=
∫ Ti

0
h2(Ti − u)du

=
∫ Ti+dTi

dTi

h2(Ti + dTi − u)du (28)

for any infinitesimally small dTi . Taking the partial
derivative of the above equation with respect to Ti ,
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we get:

∂(ϑ2
i Ti)

∂Ti
= lim

dTi→0

(∫ Ti+dTi
0 h2(Ti + dTi − u)du − ∫ Ti

0 h2(Ti − u)du
)

dTi
(29)

Substituting the last equality from equation (28) into the above equation, we get:

∂(ϑ2
i Ti)

∂Ti
= lim

dTi→0

(∫ Ti+dTi
0 h2(Ti + dTi − u)du − ∫ Ti+dTi

dTi
h2(Ti + dTi − u)du

)
dTi

= lim
dTi→0

(∫ Ti+dTi
0 h2(Ti + dTi − u)du − ∫ Ti+dTi

dTi
h2(Ti + dTi − u)du

)
dTi

= lim
dTi→0

h2(Ti + dTi)

= h2(Ti) (30)

Since the square of any function h has to be posi-
tive, the partial derivative of ϑ2

i Ti with respect to
Ti can never be negative. Hence, the expression
ϑ2

i Ti is a strictly increasing function of Ti under
the LLM with a time-homogenous forward rate
volatility function. As noted earlier, the observed
term structure of Black implied volatilities is gen-
erally humped, and often the hump is significant
enough such that the inequality given in equation
(25) holds, making the partial derivative of ϑ2

i Ti
with respect to Ti , negative. Thus, the LLM with
a time-homogenous forward rate volatility function
is frequently inconsistent with the observed implied
volatilities of caps.

2.3.2 Time-inhomogeneous evolution of forward
rate volatilities

The most significant criticism of the LMM is that
it allows time-inhomogeneous evolution of forward
rate volatilities in order to perfectly fit a chosen set
of plain vanilla interest rate derivatives. As shown in
the previous section, obtaining time-homogeneous
evolution of forward rate volatilities requires that
the following equation,

ϑ2
i Ti =

∫ Ti

0
σ2

i (u)du (31)

is satisfied for every maturity Ti , whileσi(t ) remains
a function of Ti − t , only. As shown in the previ-
ous section, this is impossible in some scenarios,
and even when it is possible, it will be too much
of a coincidence that equation (31) will be satisfied
for a set of ϑi , that are obtained by perfect cali-
bration of the model to a set of interest rate cap
prices, while keeping σi(t ) a function of Ti − t ,
only. In order to force equation (31) to hold,
Rebonato (2002) and others suggest the following
trick. Define a set of time-inhomogeneous func-
tions k(Ti) which depend upon calendar time Ti ,
and a time-homogeneous function h(Ti − t ) which
depends on Ti − t , only, such that:

ϑ2
i Ti =

∫ Ti

0
σ2

i (u)du = k2(Ti)
∫ Ti

0
h2(Ti − u)du

(32)
Rebonato (2002) suggests an optimization proce-
dure that keeps the functions k(Ti) as close to 1
as possible while keeping the function h(Ti − t )
time-homogeneous. However, little economic jus-
tification exists for using the function k(Ti) except
that it allows obtaining a perfect fit with Black
implied volatilities. To understand the implications
of using the function k(Ti), first consider the case
where forward rate volatility σi(t ) = k(Ti), such
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that h(Ti − t ) equals 1. For this case, the volatil-
ity of a given forward rate does not change at all
with the passage of time, such that a 10-year for-
ward rate has the same volatility after 9 years, when
it becomes a 1-year forward rate. Also, the volatili-
ties of different forward rates with the same residual
maturities, at different points in time, have different
volatilities.

Of course, Rebonato’s (2002) optimization pro-
cedure minimizes the effect of such economically
undesirable implications of using the function
k(Ti). Since σi(t ) = h(Ti − t )k(Ti), most of the
forward rate volatility is explained away by function
h(Ti − t ). According to Rebonato (2002), the func-
tion k(Ti) is generally “close to unity.” However,
what is defined as close to unity is left unspeci-
fied, in statistical and economic terms by Rebonato.
For example, if k(Ti) is really close to unity, it
may reflect only trading noise, and so it should
be ignored. But since k(Ti) is considered signifi-
cant in economic terms to be included as an essential
part of the optimization procedure for calibrating
the LLM, it obviously serves as a smoothing vari-
able that captures the effects of some systematic
factor(s).

For more insight, consider the values of func-
tion k(Ti) given in Rebonato (2002, Figure 8.18,
p. 242). From this figure, it can be seen that
k(1) = 1.03 and k(3) = 0.96 (approximately)
at time 0. After two years, k(3) is still 0.96 (since
k(Ti) does not change with the passage of time),
but now impacts the volatility the one-year for-
ward rate observed at time 2. Hence, at time 0, the
volatility of the one-year forward rate is increased
by a factor of 1.03, and at time 2, the volatility
of the one-year forward rate is decreased by a fac-
tor of 0.96. The difference in how the volatility of
one-year forward rate is impacted by the function
k(Ti) from time 0 to time 2 changes by a factor
of 0.96/1.03 = 0.93, or by approximately 7%. In

other words, 7% difference in implied volatility is
explained away by the function k(Ti).

2.4 Instantaneous correlations between forward
rate changes

One of the redeeming features about the LMM is
that it imposes few restrictions on the instantaneous
correlations between changes in forward rates of
different maturities. However, obtaining the corre-
lation matrix by fitting to swaption prices (caps do
not depend on correlations under the LMM) would
leave too many parameters to be estimated, without
ensuring whether the correlation matrix is a valid
correlation matrix. To ensure that the correlation
matrix is valid, Schoenmakers and Coffey (2003)
suggest certain conditions that ensure that the cor-
relation matrix admits a Cholesky decomposition.
In the following, we review the Schoenmakers and
Coffey (2003) method, followed by another simpler
and similar method proposed by Doust (2007), that
also admits a Cholesky decomposition.

Let the instantaneous correlation between the per-
centage changes in the forward rates f (t , Ti , Ti+1)
and f (t , Tj , Tj+1) be given as ρij(t ). A desirable
instantaneous correlation structure should have the
following properties. For all i and j equal to
0, 1, 2, . . . , n − 1:

(1) ρii(t ) = 1.
(2) ρij(t ) = ρji(t ).
(3) −1 ≤ ρij(t ) ≤ 1.
(4) The correlation matrix is positive semi-definite

(or all eigenvalues are non-negative).
(5) ρij(t ) = f (Ti − t , Tj − t ).
(6) limTj→∞ ρij(t ) = ρ∞ > 0.
(7) ρj,j+k(t ) > ρi,i+k(t ), for j > i, and k > 0.

The first four properties are mathematical prop-
erties of any well-defined correlation matrix. The
last three properties are based on economic con-
siderations regarding the LFM. The fifth property
requires that the correlations be time-homogenous
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functions, and depend only on the residual
maturities Ti − t and Tj − t . The sixth prop-
erty requires that asymptotic correlation defined as
the correlation between the percentage changes of
any forward rate and the infinite maturity forward
rate is positive. The intuition behind this obser-
vation is based upon using long maturity forward
rates (e.g., 10–20 years) as a proxy for the infinite
maturity forward rate. Economic arguments based
on the possibility of riskless arbitrage (see Dybvig
et al., 1996) require that infinite maturity forward
rate be constant, and hence, the asymptotic cor-
relation must be zero. On the other hand, typical
applications of the LLM assume that the asymp-
totic correlation is positive. We do not take a strong
theoretical position on this issue for the exposition
of the LLM. The seventh property requires that the
correlations between the percentage changes in for-
ward rates with the same difference in maturities,
should be higher for longer maturity forward rates.
In other words, the correlation between the percent-
age changes in the 15-year and the 16-year maturity
forward rates should be higher than the correlation
between the percentage changes in the 1-year and
the 2-year maturity forward rates.

Schoenmakers and Coffey (2003) derive a set of
parametric functional forms for the correlation
function. These authors begin with a finite sequence
of positive real numbers given as follows:

a0 < a1 < a2 < · · · < an−1 (33)

such that,
a0

a1
<

a1

a2
< · · · < an−2

an−1
(34)

The correlations between the percentage changes in
discrete forward rates are defined as follows:

ρi,j(t ) = ai

aj
,

where

i ≤ j, for all i, j = 0, 1, 2, . . . , n − 1. (35)

The above equation only defines the upper trian-
gle of the correlation matrix including the diagonal

elements. The elements in the lower triangle of
the correlation matrix, excluding the diagonal
elements, are defined as:

ρi,j(t ) = ρj,i(t ),

where

i > j, for all j = 0, 1, 2, . . . , n − 2,

and i = 1, 2, . . . , n − 1 (36)

using the second property of a correlation matrix
given earlier. The above framework allows the cor-
relations between the percentage changes in forward
rates with the same difference in maturities, to
be higher for longer maturity forward rates, or
ρj,j+k(t ) > ρi,i+k(t ), for j > i, and k > 0 (see
property 7). In general, the above correlations sat-
isfy all seven properties given earlier using n number
of parameters a0, a1, a2, . . . , an−1.

Schoenmakers and Coffey (2003) demonstrate that
the above representation of correlation matrix can
always be characterized in terms of a finite sequence
of non-negative numbers �1, �2, . . . ,�n−1, as
follows:

ρi,j(t ) = exp


−

j∑
k=i+1

(k − i)�K

+
n−1∑

k=j+1

(j − i)�k


, for all i < j (37)

where i = 0, 1, 2, . . . , n − 2, and j = 1, 2, . . . ,
n − 1, and,

ρi,i(t ) = 1, for all i = 0, 1, 2, . . . , n − 1 (38)

The representation given above is neither para-
metric nor non-parametric. It is not parametric
since the number of parameters is of the order
O(n), and it increases linearly with the number
of forward rates. The representation is also not
purely non-parametric, since that would require
O(n2) number of parameters. Hence, Schoenmak-
ers and Coffey (2003) call the above representation
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as semi-parametric. These authors also show that
putting additional restrictions on the sequence of
non-negative numbers�1,�2, . . . ,�n−1, leads to
simple parametric forms of correlation functions
as special cases of the semi-parametric correlation
matrix.

Doust (2007) provides a similar and yet simpler
method that admits a Cholesky decomposition for
the correlation matrix. As a simple demonstration
of the Doust (2007) method, consider a 4 × 4 cor-
relation matrix corresponding to changes in four
different forward rates of increasing maturities.
Define 4 − 1 = 3 numbers b1, b2, and b3, with
the only restriction as follows:

−1 ≤ bi ≤ 1, i = 1, 2, and 3 (39)

The correlation matrix is given as:


1 b1 b1b2 b1b2b3

b1 1 b2 b2b3

b1b2 b2 1 b3

b1b2b3 b2b3 b3 1


 (40)

Generalizing the above result, any N −1 real num-
bers, which lie in between −1 and 1 are sufficient
for generating a N ×N , positive definite correlation
matrix using the Doust method.

By appropriately selecting the values of the parame-
ters bi , different types of decorrelation patterns can
be obtained. For example, a simple one-parameter
Doust model is given by the function bk =
exp ( − β/k) for each k. If more control is required
on the rate of decorrelation as a function of tenor
of the forward rate, then a two-parameter Doust
model can be used with the function bk = exp ( −
β/kγ ) for each k.

3 The LIBOR Market Model Smiles, Too

3.1 Explaining the smile: The first approach

In the beginning of mid-1990s, a smile (or smirk)
appeared in the pricing of caplets, resulting in a

monotonically decreasing Black implied volatility as
a function of the strike rate of the caplets. The smile
in the interest rate derivative market did not seem
to be related to a sudden increase in risk-aversion
or “crashophobia” as it was in the equity options
market.2 Further, unless the downward jumps in the
interest rates had become more likely to occur after
mid-1990s, or the investors’ risk-aversion against a
sudden drop in interest rates had increased signifi-
cantly, the caplet smile did not seem to be driven by
jump-induced risk aversion/distributional effects. A
more likely explanation of the appearance of the
smile was the realization among traders that the log-
normal forward rate distribution did not capture
the forward rate dynamics properly. The lognor-
mal distribution implies a strong dependence of
the forward rate volatility on its level. For example,
under the lognormal distribution, a given forward
rate is twice as volatile when it is at 6% versus
when it is at 3%. Though interest rate volatilities
do increase with the level of the rates, the increase
is not so strong as to be proportional to their level.
Hence, a more likely explanation of the appear-
ance of the caplet smile beginning mid-1990s is
that the LFM was replaced by traders with better
models which correct the misspecification of this
model. Of course, this view is not shared by all
researchers. For example, Jarrow et al. (2007) use
a model with unspanned stochastic volatility and
jumps to explain the caplet smile.

Two models that resolve this type of misspecification
of the LFM are:

(i) models that use a general CEV process for
capturing the forward rate dynamics, and

(ii) models with a displaced diffusion for the for-
ward rate process.

In the following, we give analytical solutions to
caplets under both extensions of the LFM. Before
giving these solutions, we would like to make two
related observations. First, as shown by Marris
(1999), with suitable parameterizations, an almost
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perfect correspondence exists between the solutions
of caplets using the CEV approach and the displaced
diffusion approach over a range of strikes. Since the
displaced diffusion approach is significantly easier
to use analytically, this approach can be used as
a numerical approximation of the CEV approach,
even if the trader believed the CEV approach to
be true. Second, the above two extensions are not
the only approaches to fit the caplet smile. As
shown by Glasserman and Kou (2000), the caplet
smile can also be fitted using a jump-diffusion
model with time-dependent jump intensity and
jump size distribution parameters. However, the
time-dependent jump approach of Glasserman and
Kou introduces a highly time-inhomogenous caplet
smile, such that future caplet smiles can be markedly
different from current caplet smiles.

3.1.1 The CEV extension of the LFM

The CEV extension of the LFM by Andersen
and Andreasen (2000) specifies the following zero-
drift stochastic process for f (t , Ti , Ti+1) under the
forward measure P̃ i defined with respect to the
numeraire asset P(t , Ti+1):

df (t , Ti , Ti+1) = σi(t )f (t , Ti , Ti+1)βdZi(t ),

0 ≤ β ≤ 1 (41)

where dZi(t ) is a Wiener process under the forward
measure P̃ i , and σi(t ) measures the volatility of
the forward rate process. The values of β = 0 and
β = 1, correspond to the cases of Gaussian and
lognormal forward rate dynamics, respectively. For
the values of 0 < β < 0.5, the above equation has a
unique solution, if f (t , Ti , Ti+1) = 0 is assumed to
be the absorbing barrier. For the case, 0 < β ≤ 0.5,
the analytical solution of the probability density
of f (T , Ti , Ti+1), conditional on f (t , Ti , Ti+1) is
given as follows:3

p(x) = 2(1 − β)k1/(2−2β)(uw1−4β)1/(4−4β)

× e−(u+w)I1/(2−2β)(2
√

uw) (42)

where,

k = 1

2v2
T (T − t )(1 − β)2

u = k(f (t , Ti , Ti+1))2(1−β)

w = kx2(1−β)

Iq = the modified Bessel function of the first kind
of order q, and

vT =
√

1

T − t

∫ T

t
σ2

i (u)du

The knowledge of the conditional probability den-
sity given above is useful in pricing exotic options
using Monte-Carlo simulations. The analytical for-
mula of a caplet can be obtained by using the
following formula given in equation (11):

PCapleti
(t ) = F × Ûi × P(t , Ti+1)

× E i
t ( max [L(Ti , Ti+1) − Ki , 0])

(43)

where by definition L(Ti , Ti+1) = f (Ti , Ti , Ti+1).
Using the conditional density given in equation
(42), the expectation in the above equation can be
solved to give:

PCapleti
(t )

= F × Ûi × P(t , Ti+1)

×




f (t , Ti , Ti+1)

(
1 − χ2

×
(

2K 1−β
i ;

1

1 − β
+ 2, 2u

))

−Kiχ
2
(

2u;
1

1 − β
, 2kK 1−β

i

)




(44)

where χ2(x; a, b) is the cumulative distribution of
the non-central chi-squared distribution with a
degrees of freedom and parameter of non-centrality
equal to b, computed at point x. The above formula
implies a monotonically decreasing Black implied
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volatility as a function of the strike rate of the
caplets. The smile becomes steeper with decreas-
ing values of β. Hence, by appropriately choosing
the parameter β, the CEV forward rate process can
be calibrated to fit the caplet smile. The above for-
mula is valid only for β values between 0 and 0.5. If
0.5 < β < 1, then Monte Carlo simulations must
be used to price caplets.

Recall that one of the appealing features of the LFM
is that it allows a perfect fit with the at-the-money
caplets using the three-step method outlined by
Rebonato (2002). Unfortunately, in the presence
of a caplet smile, a perfect fit with the caplets of
all maturities and all strikes cannot be obtained.
Hence, one must choose the β value, which mini-
mizes the deviations of the model caplet prices from
the actual caplet prices.

3.1.2 Displaced diffusion extension of the LFM

As mentioned earlier, with suitable parameteri-
zations, an almost perfect correspondence exists
between the solutions of caplets using the CEV
approach and the displaced diffusion approach over
a range of strikes. Hence, the displaced diffusion
model can be used as a numerical approximation to
the caplet prices even when the trader believe the
CEV approach to be true. Using the displaced dif-
fusion framework, the forward rates are defined as
follows:

f (t , Ti , Ti+1) = δ+ Yi(t ) (45)

where the stochastic process of the state variable
Yi(t ) is given as follows:

dYi(t )

Yi(t )
= σyi(t )dZi(t ) (46)

Using Ito’s lemma, the stochastic process of the
forward rate is given as follows:

df (t , Ti , Ti+1) = σyi(t )(f (t , Ti , Ti+1) − δ)dZi(t )

(47)

Taking the stochastic integral of equation (46), and
then substituting equation (45), the forward rate at
time T (such that t ≤ T < Ti < Ti+1) can be
represented as follows:

f (T , Ti , Ti+1)

= δ+ (f (t , Ti , Ti+1)

− δ)e−(1/2)
∫ T

t σ2
yi (v)dv +∫ T

t σyi (v)dZi (v) (48)

Hence, the forward rates follow a shifted lognor-
mal distribution. To solve for caplet prices note
that substituting f (Ti , Ti , Ti+1) = L(Ti , Ti+1) =
δ + Yi(Ti), in the caplet valuation formula in
equation (43), gives:

PCapleti
(t ) = F × Ûi × P(t , Ti+1)

× E i
t ( max [δ+ Yi(Ti) − Ki , 0])

= F × Ûi × P(t , Ti+1)

× E i
t ( max [Yi(Ti) − Kyi , 0]) (49)

where,
Kyi = Ki − δ (50)

Since Yi(Ti) is lognormally distributed, the expecta-
tion in equation (49) has the same form of solution
as under the LFM, and can be obtained by a simple
inspection of equations (10) and (12). Hence, the
caplet price is given as follows:

PCapleti
(t ) = BlackCapleti

(f (t , Ti , Ti+1)

− δ, Ki − δ, Ti − t ,ϑyi)

= F × Ûi × P(t , Ti+1)

× {(f (t , Ti , Ti+1) − δ)N (d1,i)

− (Ki − δ)N (d2,i)} (51)

where,

d1,i =

ln ((f (t , Ti , Ti+1) − δ)/(Ki − δ))

+ϑ2
yi(Ti − t )/2

ϑyi
√

Ti − t
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d2,i =

ln ((f (t , Ti , Ti+1) − δ)/(Ki − δ))

−ϑ2
yi(Ti − t )/2

ϑyi
√

Ti − t

where ϑyi is defined as follows:

ϑyi =
√

1

Ti − t

∫ Ti

t
σ2

yi(u)du (52)

The above caplet formula is identical to the corre-
sponding formula under the LFM given in equation
(10), except for the term δ, which allows for fit-
ting the caplet smile. In general, negative values
of δ allow fitting a monotonically decreasing caplet
smile.

A potential criticism of the displaced diffusion
model is that negative values of δ allow for the
occurrence of negative forward rates. However,
for the range of values of δ required for fitting
the caplet smile, the probability of occurrence of
negative rates is extremely low. Hence, for most
practical purposes the displaced diffusion model
works well in capturing the caplet smile. Further,
since a direct one to one correspondence exists
between the displaced diffusion model and the
CEV extension of the LFM (see Marris, 1999),
the above formula can also be used as an analytical
approximation of the latter model, with a suitable
parameterization.

In order to allow maximum generality that allows
pricing of swaptions also, we model the forward
rates using a single numeraire under the displaced
diffusion model. Similar to the single numeraire-
based LFM (see equations (13) and (21)), the joint
dynamics of forward rates under the displaced dif-
fusion model are given by transforming equations
(46) and (47), using a change of measure, as follows:

dYi(t )

Yi(t )
= µk

yi(t )dt + σyi(t )dZ k
i (t ) (53)

and,

df (t , Ti , Ti+1) = (f (t , Ti , Ti+1) − δ)(µk
yi(t )dt

+ σyi(t )dZ k
i (t )) (54)

where,

µk
i (t ) = σyi(t )

×
i∑

j=k+1

σyj(t )ρij(f (t , Tj , Tj+1) − δ)Ûj

(1 + f (t , Tj , Tj+1)Ûj)
,

for i > k

µk
i (t ) = − σyi(t )

×
k∑

j=i+1

σyj(t )ρij(f (t , Tj , Tj+1) − δ)Ûj

(1 + f (t , Tj , Tj+1)Ûj)
,

for i < k

µk
i (t ) = µi

i(t ) = 0, for i = k

(55)

Since individual caplets comprising the cap can be
priced using different numeraires, the lognormal
assumption can be maintained for different forward
rates (see equations (46) and (47)) for pricing caps.
However, swaptions and coupon bond options rep-
resent options on portfolios (and not portfolios of
options, like caps), and hence the joint stochastic
evolution of different forward rates must be mod-
eled for pricing these instruments. Modeling the
joint evolution of forward rates requires that all
forward rate processes are measured under a single
forward measure and are given by equations (54)
and (55), respectively.

3.2 Capturing the smile using the LMM-SABR
model

Both the CEV and displaced-diffusion extensions
of the LFM can only allow monotonically decreas-
ing smiles. However, since 1998, the caplet smile
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has taken more complex shapes, decreasing first for
a wide range of strikes and then increasing over a
short range of strikes, resembling the “hockey-stick
shape.” A number of stochastic volatility models
have been proposed in the literature to explain
the hockey-stick shaped smile, including Andersen
and Andreasen (2000), Andersen and Brotherton-
Ratcliffe (2001), Hagan et al. (2002), Wu and
Zhang (2002), Joshi and Rebonato (2003), Piter-
barg (2003, 2005), Jarrow et al. (2007), Rebonato
and Kainth (2004), Rebonato and White (2009),
Rebonato and McKay (2009), and Rebonato et al.
(2009).

For various practical reasons, the SABR model of
Hagan, Kumar, Lesniewski, and Woodward (2002)
(HKLW) has been adopted by the industry as
the new market standard for pricing plain-vanilla
derivatives, such as caps and swaptions. The attrac-
tive feature of this model is that it allows stochastic
volatility factors, without increasing the computa-
tional burden significantly. The original version of
the SABR model provides an analytical approxima-
tion only for pricing caps. Rebonato and White
(2009) extend the SABR model using a single

numeraire, such that the extended model called the
LLM-SABR model provides analytical approxima-
tions for swaptions, and links the prices of caps and
swaptions in a unified framework.

Under the SABR model of HKLW, the forward
rate f (t , Ti , Ti+1) follows the following stochastic
process under its own measure:

df (t , Ti , Ti+1) = f (t , Ti , Ti+1)βiσi(t )dZi(t ) (56)

and the volatility process is given under the same
measure as follows:

dσi(t ) = σi(t )vidWi(t ) (57)

where, dZi(t )dWi(t ) = ρidt , and the initial val-
ues of the forward rate and its volatility are given
as f (0, Ti , Ti+1) and σi(0), respectively. As shown
by HKLW, the price of a caplet under the SABR
model can be approximated by the Black formula
in equation (10), with Black implied volatility ϑi
replaced as follows:

ϑi = A
[

x
χ(x)

]
B (58)

where,

A = σi(0)

(fK )
1−β

2

[
1 + (1−βi )2

24 ln2
(

f
K

)
+ (1−βi )4

1920 ln4
(

f
K

)
+ · · ·

] (59)

B =
[

1 +
(

(1 − βi)2

24

σ2
i (0)

(fK )1−β + ρiβiviσi(0)

4(fK )(1−β)/2
+ 2 − 3ρ2

i

24
v2

i

)
Ti + · · ·

]
(60)

x = vi

σi(0)
(fK )(1−βi )/2 ln

(
f
K

)
(61)

χ(x) = ln

(√
1 − 2ρix + x2 + x − ρi

1 − ρi

)
(62)

and the initial forward rate is redefined as f =
f (0, Ti , Ti+1), and caplet strike price equals K .

The main advantage of the above formula is
that it imposes little additional computational

burden to price a caplet, than imposed by the
deterministic volatility LIBOR market model.
The approximation works well as long as one
is not valuing caplets with strikes that are too
out-of-money, and expiration dates that are not too
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distant in the future. The formula captures the CEV
nature of the forward rate process using the param-
eter βi , it allows instantaneous correlation between
the forward rate process and its volatility using the
parameter ρi , and it allows volatility of volatility
using the parameter vi . Allowing stochastic volatil-
ity makes this model more versatile in capturing the
hockey-stick shaped smile in pricing caps.

Though the SABR model is useful for pricing
caps, it does not allow pricing of swaptions, since
forwards rates and volatility processes are defined
under the forward-rate specific measure, while pric-
ing swaptions require all forward rate processes and
volatility processes to be defined under a com-
mon measure. Rebonato and White (2009) and
Rebonato et al. (2009) extend the SABR model to
allow a common measure using the LMM frame-
work. The combined model called the LMM-SABR
model derives forward rate drift adjustments and
volatility drift adjustments as follows.

To allow for a single numeraire, reconsider the for-
ward rate process and the volatility process given
in equations (56) and (57), respectively, in a more
general form, given under a common forward mea-
sure P̃ j associated with a single numeraire asset
P(t , Tj+1), as follows:

df (t , Tj , Tj+1) = σj(t , f (t ))kj(t )dZj(t ) (63)

dkj(t ) = vj(t , kt )dWj(t ) (64)

where, f (t ) = [f (t , T0, T1), f (t , T1, T2), . . .], and
kt = [k1(t ), k2(t ), . . .], both are vectors con-
taining all forward rates and stochastic volatilities,
respectively. Equations (63) and (64) are significant
generalizations of equations (56) and (57), respec-
tively, and they apply not only to the LLM-SABR
model, but also to many other stochastic volatil-
ity extensions of the LLM given in the literature.
The above processes have zero drifts, because the
measure corresponding to them is also the com-
mon forward measure P̃ j . In general, the stochastic
processes for all other forward rates, f (t , Ti , Ti+1),

for all i �= j, and all other volatilities, ki(t ), for all
i �= j, will have non-zero drifts. The stochastic pro-
cesses for these forward rates and volatilities, under
the common measure P̃ j can be given as follows:

df (t , Ti , Ti+1) = µi(t , f (t ), k(t ))dt

+ σi(t , f (t ))ki(t )dZ
j
i (t ) (65)

dki(t ) = ηi(t , f (t ), k(t ))dt ,

+ vi(t , kt )dW
j

i (t ) (66)

for all i = 0, 1, 2, . . . n.

where,

dZ
j
pdZ

j
q = ψpq

dW
j

p dW
j

q = rpq

dZ
j
pdW

j
q = ρpq

for all p, q = 0, 1, 2, . . . , n.

By applying a change of measure using the Girsanov
theorem, the drift specification in equations (65)
and (66), can be derived from the stochastic pro-
cesses followed by these variables under their own
measures (recall that these variables will have zero
drifts under their own measures, but non-zero
drifts under the measure P̃ j), following similar
lines of arguments as given for the LFM model in
equations (13) through (21). Using this line of rea-
soning, Rebonato and White (2009) derive the form
the drifts given in equations (65) and (66). They
also derive an approximate formula for swaptions
using the specification of drifts under a common
numeraire.

Rebonato, McKay, White (RMW) (2009) provide
an extensive analysis of the LMM-SABR model, and
show how to calibrate the model to the prices of
caps and swaptions. This is not as straightforward
as the traditional LMM, since the number of param-
eters and state variables under the LMM-SABR
model are significantly higher. The functional form
of the volatilities of volatilities, the correlations
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between different forward rate changes, the correla-
tions between forward rate changes and volatilities,
and the correlations between different volatilities,
all enter as additional inputs under the LMM-
SABR model. RMW find that LMM-SABR model
succeeds in explaining the non-monotonic smiles
observed in the caps and swaptions markets. Of
course, this is not surprising as given the number
of parameters and state variables that enter into the
LMM-SABR model.

4 A Critique of the LMM and the LMM-SABR
Model

The following critique of the LMM and the LMM-
SABR model is divided into two parts. The first
part questions the assumption of zero drifts for the
volatility processes under the LMM-SABR model.
The second part reconsiders the LMM and the
LMM-SABR model from the perspective of a par-
tially hedged trader or an investor/speculator who
must evaluate risk-return trade-offs. We show that
due to the nature of calibrations used under the
LMM and the LMM-SABR model, it is virtually
impossible to perform risk-return analysis, which
requires information from the physical measure.

4.1 Zero drifts for the volatility processes

The development of the simple formula for pric-
ing caps using the SABR model by HKLW (2002)
is reminiscent of the development of Black formula
for pricing caps in the late 80s and early 90s. In both
instances, the formulas were guided by heuristic
derivations, and the fuller development of the eco-
nomic reasoning which made these formulas con-
sistent with absence of arbitrage, were derived later
by other researchers. In the case of Black formula for
pricing caps, Brace et al. (1997), Jamshidian (1997),
and Miltersen et al. (1997) demonstrated why using
a zero drift for the discrete forward rate process under
its own measure was economically justified, since
the discrete forward rate process could be repre-
sented as a discounted traded asset. By Martingale

valuation theory, absence of arbitrage guarantees the
existence of a measure under which the discounted
traded asset has a zero drift.

However, HKLW use a zero drift under the SABR
model not only for the forward rate process but also
for the volatility process. But volatility is not a traded
asset, and hence, Martingale valuation theory can-
not be invoked to allow a zero drift in equation (57).
Obviously, this is done solely for the convenience
of obtaining the SABR approximation formula for
Black implied volatility in equation (58). With
a non-zero mean reverting drift for the volatility
process, such a simple approximation formula can-
not be obtained. Rebonato and White (2009) and
Rebonato et al. (2009) also assume zero drift for
the volatility process in equation (64), and the use
this specification to obtain non-zero drifts in equa-
tion (66). These authors maintain zero drifts for the
volatility process under the forward rate’s own mea-
sure, to allow the formula in equation (58) to be
consistent with the more general framework they
present for pricing swaptions and other complex
interest rate derivatives using a common numeraire.

Using a zero drift for the volatility process could
be considered as a theoretical issue of not much
practical significance, except that volatility is the
most important input for pricing options, and to
make an erroneous assumption about volatility can
lead to serious errors in option prices. To appre-
ciate this argument consider Heston’s model for
equity option pricing. Let y(t ) = S(t )/B(t ) repre-
sent the stock price discounted by the money market
account. The stochastic processes for the discounted
stock price and the volatility are given under the
physical measure as follows:

dy(t )

y(t )
= (µ − r)dt +

√
v(t )dZ1(t ) (67)

dv(t ) = α(m − v(t )) dt + σ
√

v(t )dZ2(t ) (68)

whereµ is the physical stock return, and r is the risk-
less rate. Now, consider the change of measure, such
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that the stochastic processes under the risk-neutral
measure are given as follows:

dy(t )/y(t ) =
√

v(t )dZ Q
1 (t ) (69)

dv(t ) = σ
√

v(t )dZ Q
2 (t ) (70)

The transformation of equation (67) to equation
(69) is justified by absence of arbitrage, allowing
a zero drift for the discounted stock price process
under the risk-neutral measure, but the transfor-
mation of equation (68) to equation (70) is not
justified by absence of arbitrage alone, and forcing
this transformation implies a very peculiar form of
the market price of volatility risk γ(t ), given by the
change of measure as follows:

dZ Q
2 (t ) = dZ2(t ) + γ(t )dt (71)

where

γ(t ) = αm

σ
√

v(t )
dt − α

σ

√
v(t )dt

Unless there is a valid empirical justification for
using the above form of market price of volatil-
ity risk, the option prices produced by the Heston
model will be wrong. Since volatilities are almost
always mean reverting, both under the physical
measure and the risk-neutral measure, equation
(70) does not have any practical justification. A
similar criticism applies to using zero drifts in the
volatility processes in equations (57) and (64) for
the SABR and the LMM-SABR models, respec-
tively. Unless market prices of volatility risks are of a
very peculiar form, zero-drifts in equations (57) and
(64) cannot be obtained from the physical processes
corresponding to these volatilities.

Again, note that this is not a theoretical issue of
little practical significance. The volatility processes
used in equations (57) and (64) will either over-
price long-term options, or underprice short-term
options, since volatilities are non-stationary and do
not revert to a long-term mean. Also, as RMW
(2009) point out, the expectation of the volatility

generated by equation (57) (which is what concep-
tually, enters the pricing of caps) consists of many
“low” paths, and a very few close to explosive paths.
When volatility is high, this leads to problems in
numerical convergence and stability of the model.

A more serious issue related to using zero-drifts
in the volatility processes has to with calibrating
the LMM-SABR model using time-homogeneous
functions for volatilities. The following quote by
RMW (2009, p. 59) is quite revealing in this
regard,

“This is when time-homogeneous pricing models, which by
and large we like, get into trouble. By construction they
assume that calendar time is irrelevant, and that the only vari-
able that matters to determine volatilities, correlations, and
volatilities of volatilities is the residual time to maturity of the
forward rate(s). For time-homogeneous models, a one-year
option seen as of today will pretty much “look” and behave like
a one-year option in five year or ten years’ time. But if today we
are in an excited state, this means that a time-homogeneous
model fitted to short dated-options will propagate the current
state of excitation ad infinitum. As a consequence the one-
year option in ten years’ time will be priced as if the current
state of turmoil will still be present, say, ten years from now.
What in normal times is a virtue, in excited periods therefore
becomes a serious shortcoming.”

Note that what is considered a serious shortcoming
of “time-homogeneous pricing models” by RMW
(2009), is actually a serious shortcoming of using
zero drifts in equations (57) and (64). These zero
drifts have no economic justification, and if one
were to use drifts with mean reversion, which is in
general a property of the volatility processes used
in other areas of derivatives (e.g., Heston model for
pricing equity options), then even if today we are
in an excited state, it will not imply that a time-
homogeneous model fitted to short dated-options will
propagate the current state of excitation ad infinitum.
In other words, since volatility must revert towards
its long term mean (due to mean reversion), the
current state of excitation will not be propagated ad
infinitum.
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4.2 Risk-return analysis under the LMM and the
LMM-SABR model

To evaluate the usefulness of the LMM and the
LMM-SABR model, we consider two types of par-
ticipants in the interest rate derivatives market.
The first participant is a hedged trader or market
maker who maintains zero (or close to zero) expo-
sure to the underlying factors driving the interest
rate market, and trades to exploit arbitrage oppor-
tunities, thereby providing much needed liquidity
to this market. The second participant is a par-
tially hedged trader or an investor/speculator, who
maintains significant exposure against the under-
lying interest rate factors by either only partially
hedging using interest rate derivatives, or specu-
lating using interest rate derivatives. The interest
rate derivative desks of many investment banks and
larger universal banks generally play the role of a
hedged trader or market maker. On the other hand,
most commercial banks, bond funds, fixed income
hedge funds, and other corporations generally act
like partially hedged traders, and occasionally as
investors/speculators in this market.

The usefulness of an interest rate model for both
types of participants in this market, can be measured
using the following three objectives:

(i) Valuation of plain vanilla interest rate
derivatives,

(ii) Hedging plain vanilla derivatives, and valu-
ation and hedging of complex interest rate
derivatives,

(iii) Risk-return analysis.

If the only objective is the valuation of plain vanilla
interest rate derivatives—for example to do mark-to-
market accounting—then a variety of fundamental
models, single-plus models, double-plus models,
and triple-plus models can be used. By either intro-
ducing time-dependencies or allowing more factors,
a host of these models can value plain vanilla inter-
est rate derivatives with similar level of accuracy,

despite the fact that they may make vastly different
assumptions about volatilities and correlations.

If both the first two objectives must be satisfied—for
example, in the case of a hedged trader or a mar-
ket maker—then it is important to use only those
models, which have realistic dynamics of volatilities
and correlations. The LMM and the LMM-SABR
model have been proposed as models that can sat-
isfy the first two objectives, even though these
models allow some degree of time-inhomogeneous
volatilities, and assume zero drifts for the volatility
processes in the case of the LMM-SABR model.

However, if all three objectives must be satisfied—
for example, in the case of a partially hedged trader
or an investor/speculator—then both the LMM and
the LMM-SABR model fail, as these models can-
not satisfy the third objective. This is because it is
virtually impossible to determine the physical evo-
lution of the state variables under the LMM and
the LMM-SABR model. Due to the nature of cali-
brations, these models do not distinguish between
state variables and parameters of the model, they
use time-inhomogeneous volatilities, and they allow
model inputs to change period by period. Since esti-
mation is done mainly for the purpose of obtaining
risk-neutral parameters that perfectly fit the cross-
section of market prices, it is difficult to apply
time-series econometric techniques, which require
time-homogeneity assumptions, to infer the market
prices of interest rate risk and volatility risk. Since
the nature of physical processes under these mod-
els remain unknown, meeting the third objective
of risk/return analysis is virtually impossible under
these models.

Hence, an unhedged trader or an investor/speculator
who wants to make risk/return decisions cannot
rely on the LMM and the LMM-SABR models for
making any meaningful analysis. It is interesting to
note that many investment banks that routinely
sell interest rate derivatives to partially hedged
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traders and/or investors/speculators, are well-
protected using the LMM and the LMM-SABR
model, since their interest rate derivatives desks
are totally hedged, but their clients who must
make risk/return decisions (since they are not
totally hedged), have little guidance on how to
do this using these time-inhomogeneous models
with erroneous assumptions about the volatility
processes.

To emphasize the importance of the third objec-
tive of doing risk/return analysis, note that this
was sorely lacking in the recent years in the credit
derivatives market. At the height of the credit bub-
ble, fixed income quants touted a range of credit
derivative valuation models that used risk-neutral
information implied by the market prices of plain
vanilla credit derivatives to value other credit deriva-
tives. So, if the value of a credit default swap (CDS)
implied an extremely low risk-neutral probability
of default, then that became a valid input for pric-
ing other credit derivatives related to the security (or
securities) underlying the CDS.This type of relative
valuation modeling, where market implied param-
eters are used without any fundamental analysis, is
at the heart of not only the current financial crisis,
but also other crises in history where analysts price
whatever asset is in vogue using parameters implied
by valuation of similar assets. Hence, valuation and
hedging are only necessary, but not sufficient con-
ditions for a good model. A good model should
not only allow valuation and hedging, which can
be done under the risk-neutral measure, but also
allow risk/return analysis under the physical measure.
Just in case the U.S. Treasury market is in a bubble
right now, such risk/return analysis could prove very
useful for investors in the interest rate derivatives
market, in the near future.

5 Alternatives to the LMM and the
LMM-SABR Model

Given the critique of the LMM and the LMM-
SABR model in the previous section, practitioners

may consider using TSMs in the affine and
quadratic classes, which allow analytical solu-
tions. NBS (2007) derive single-plus and double-
plus extensions of virtually all known affine and
quadratic models in the term structure literature.
They also test the double-plus versions of com-
monly used three-factor models in the affine class,
using caps and swaptions data from 2007, and
report good performance of some of these models.
NBS do not consider any triple-plus models due
to the high degree of smoothing resulting from two
sources of time-inhomogeneity under these models.

Moreover, unlike the very high errors for funda-
mental quadratic models reported by Li and Zhao
(2006), NBS find that double-plus versions of
quadratic models with even less flexibility (i.e.,
with orthogonal factors and no interdependencies
through the drift terms) have only a fraction of the
error of the fundamental quadratic models with
more flexibility (i.e., with correlated factors and
interdependencies through the drift terms). For
example, NBS report average RMSEs of approxi-
mately 5 percent for the preference-free Q3(3) + +
model, which are significantly lower than the aver-
age RMSEs of 44 percent, 31 percent, and 15
percent for the fundamental Q3(3), Q2(3), and
Q1(3) models, respectively (computed by averag-
ing the RMSEs in each of the Panels A, B, and C of
Table 5 in Li and Zhao (2006)).

Rebonato and Cooper (1995) criticize low-
dimensional short rate models such as those in the
affine class, because these models cannot capture
the realistic decorrelation patterns found in the
empirically observed correlation structures of for-
ward rate changes. However, this criticism can be
addressed by considering high-dimensional models
in the affine and quadratic classes. For exam-
ple, NBS provide a range of simple4 AM (N ) + +
models with M square root factors and N − M
Gaussian factors, under which Gaussian factors can
have arbitrary correlations, and the models allow
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stochastic volatility by construction. They also pro-
vide preference-free Q3(N ) + + in the quadratic
class with N factors. Under all these models, the
prices of caplets can be computed using only one
numerical integral using the method of Fourier
inversion (regardless of the number of factors), and
the prices of swaptions can be computed without
any numerical integrals using the cumulant expan-
sion method introduced by Collin-Dufresne and
Goldstein (2001) and generalized by NBS (2007).
Hence, the double-plus models in the affine and
quadratic classes which have performed well (i.e.,
the A0(3) ++ extension of Hull and White (1996)
and the Q3(3) + + model of NBS (2007)) can be
extended to allow many factors, such that they can
fit the empirically observed correlation structures.
Since fast numerical schemes have been developed
to price caplets and swaptions under an arbitrary
number of factors, simple AM (N ) + + models
and Q3(N ) + + models represent potential alter-
natives to the LMM for valuing and hedging these
plain-vanilla derivatives. Further, since probability
distribution of the state variables are available in
semi-analytical form under the simple AM (N ) ++
models and Q3(N ) + + models, fast Monte Carlo
methods can be used to value path-dependent
options under these high-dimensional models.

6 Conclusions

This paper presented a critical review of the LIBOR
market model (LMM) and the LMM-SABR model.
Using the new taxonomy of term structure mod-
els by NBS (2007), we show the popular versions
of the LMM and LMM-SABR model are triple-
plus models. These models are calibrated to market
prices by allowing time-inhomogeneous volatilities,
and by changing numerous model inputs, period
by period. Changing the model period by period
and using time-inhomogeneous volatilities make
risk-return analysis impossible under the physical
measure. Further, this paper demonstrated that
both the SABR model and the LMM-SABR model

are based on the highly questionable assumption
of zero drifts for the volatility processes (under
the forward rate specific measures), which has no
economic justification, and can lead to explosive
behavior for volatilities. Finally, this paper recom-
mends using high-dimensional affine and quadratic
models that allow fast analytical approximations
(such as the Fourier inversion method and the
cumulant expansion method) for pricing caps and
swaptions, as alternatives to the LMM and the
LMM-SABR model.

Notes
1 Since the correlation does not depend on the specific

numeraire being used, the Wiener processes in the above
equation are written without the superscripts.

2 The smile first appeared in the equity options market after
the equity market crash of 1987. The shape of the smile
became more pronounced in a few years after the crash,
which made the implied volatilities of out-of-the-money
put options significantly higher than the implied volatili-
ties of at-the-money put options. Increases in the aversion
to risk of another equity market crash, or a reassessment of
the probabilities around the tail of the stock return distri-
bution (caused by sudden downward jumps in returns in
1987) were likely explanations of the smile in the equity
options market.

3 See Brigo and Mercurio (2001).
4 These are defined as “simple” AM (N )++ models by NBS

(2007), because they do not allow correlations between
the square root processes and the Gaussian processes.
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