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THE FUNDAMENTAL LAW OF ACTIVE PORTFOLIO MANAGEMENT
Roger Clarkea, Harindra de Silvaa and Steven Thorleyb,∗

The strategic perspectives and terminology of the fundamental law is a common frame-
work in the practice of active portfolio management. For tractability, fundamental law
theory depends on the simplifying assumption of a diagonal covariance matrix of security
returns, though the matrices supplied to numerical optimizers are fully populated. We
extend the fundamental law of active management to allow for a full covariance matrix
and show that the resulting ex-ante (expected) and ex-post (realized) return equations
are exact in contrast to the approximate equality of previous derivations. The exactness of
ex-post equations allows for performance attribution of realized returns that completely
decomposes the return. Because the various fundamental law parameters we define incor-
porate all the information in the covariance matrix, they should also provide better ex-ante
insights as to the sources and limitations of risk-adjusted active return. In addition to the
generalization of the fundamental law, we describe a full covariance matrix alpha gener-
ation process and add some comments to the concept of implied breadth. The mathematics
and practical application of the full covariance matrix fundamental law parameters are
illustrated using an EAFE benchmarked portfolio with the 21 countries as individual
securities.

The fundamental law of active management contin-
ues to be developed and explored as a central theme
in the science of portfolio management. The fun-
damental law, first articulated by Grinold (1989)
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and developed throughout the book by Grinold
and Kahn (1994), has seen further refinements by
Clarke et al. (2002), Qian and Hua (2004), and
others.1 The fundamental law is the basis of numer-
ous research papers on investment management as
well as the underlying rationale for many active
portfolio strategies.

Grinold (1989) and Clarke et al. (2002) (hereafter
CST) provide equations for ex-ante (expected) and
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ex-post (realized) portfolio performance under the
simplifying assumption of a diagonal covariance
matrix. We relax the assumption of uncorrelated
residual security returns and produce fundamen-
tal law equations that retain their basic form. We
also apply full covariance matrix mathematics to
the generation of security alphas as an extension
of Grinold (1994) and provide some insights into
the concept of breadth. For econometricians, the
innovations in this paper can be thought of as a
generalized-least-squares (GLS) extension of a the-
oretical framework that previously corrected for het-
eroskedasticity through weighted-least-squares, but
ignored known cross-correlations in the residuals.

We write from the perspective of an investment pro-
cess where the risk model and signal are already
established. The risk model takes the form of an
estimated security return covariance matrix while
the signal is some proprietary evaluation process
the portfolio manager uses to assign forecasted or
expected returns to each security. We take as given
that the objective of portfolio management is to
add value to a passive benchmark index. Although
we speak in terms of active return and risk with
respect to an equity market index, the mathematics
also apply to the special case of a market-neutral
long/short strategy where the benchmark is the
risk-free rate.

The outline of the paper is as follows. We first
specify an active portfolio objective function and
find a closed-form solution for the optimal secu-
rity weights. We then develop the fundamental law
theory under the generalized assumption of a full
covariance matrix in four stages: ex-ante and ex-post
equations for both unconstrained and constrained
portfolios. Next, we discuss full covariance matrix
implications for the alpha generation process and
the implied breadth. Finally, we illustrate various
fundamental law concepts with a numerical exam-
ple based on the EAFE index and its 21 constituent
country returns in September 2004.

1 Objective function

Before making some specific comments about ter-
minology and the objective function, we introduce
some key algebraic symbols. We use � (omega) for
the N × N security return covariance matrix, α

(alpha) for the N ×1 forecasted return vector, r for
the N ×1 realized return vector, and w for the N ×1
active weight vector. Individual elements in the vec-
tors are shown by the respective vector symbol with
an i subscript. Nondiagonal elements of the square
covariance matrix � are σi,j and diagonal elements
(residual return variances) are σ2

i . Other notational
choices and the use of terminology will be explained
in the development of the theory.

The standard mean–variance optimization problem
in portfolio management is to adjust the choice
of security weights to maximize a utility func-
tion that increases in expected active return and
decreases with active risk, with the tradeoff based
on a risk-aversion coefficient, λ;

U = E (RA) − λσ2
A (1)

where E (RA) is the portfolio’s expected active return
and σA is the portfolio’s ex-ante active risk. Using
the previously defined symbols, the matrix-algebra
form of Eq. (1) is

U = α′w − λw′�w (2)

where the apostrophe indicates the transpose
function.

Although similar in form to the general mean–
variance optimization problem in portfolio theory,
several aspects of the objective function in Eq. (2)
should be noted. First, the security weights in the
optimization are over- or underweights with respect
to the benchmark, sometimes referred to as active
weights. In other words, the elements of the weight
vector w sum to zero because they represent the dif-
ferences between the weights of each security in the
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managed and benchmark portfolios. Second, the
individual security returns of concern in Eq. (2) are
residual to the general market return and other fac-
tors that the portfolio manager is not attempting
to forecast. For example, consider the basic one-
factor market model for the cross-section of security
returns in a given period,

Ri = βiRM + ri (3)

where Ri is a security return in excess of the risk-free
rate, RM is the market-wide excess return, and βi is
the security beta or sensitivity to the market return.2

The security returns of interest in our optimization
problem, both expected and realized, are the resid-
ual returns in Eq. (3). Thus, the N × 1 expected
residual security return vector α represents the man-
ager’s forecast of the N × 1 residual security return
vector r .

The focus on residual security returns means that
the expected active portfolio return specified in the
objective function, E (RA) ≡ α′w, is not just the
difference between the managed and benchmark
portfolio returns. Instead, we refer to the simple
difference between the managed portfolio return,
RP, and the benchmark portfolio return, RB, as the
portfolio’s relative return; �R ≡ RP − RB. The
relative and active portfolio returns are related by

�R = (βP − βB)RM + RA (4)

where βP is the market-beta of the managed portfo-
lio and βB is the market-beta of the benchmark. As
always, portfolio returns and betas are calculated
as the market-weighted average of the securities
that make up the portfolio. In the special case of a
one-factor model where the market and benchmark
portfolios are identical, Eq. (4) becomes �R =
(βP − 1)RB + RA and the active portfolio return
is the beta-adjusted return on the managed port-
folio, RA = RP − βPRB. Alternatively, a more
general case of Eq. (3) allows for a multifactor def-
inition of residual security returns where the set of

market-wide factors might also include size (expo-
sure to large vs. small capitalization securities), value
(exposure to high vs. low book to market ratio secu-
rities), or other factors specifically excluded from the
manager’s forecast of individual security returns.

Consistent with the focus on the active portfolio
return, the portfolio risk parameter in the objec-
tive function, σA, is active as opposed to relative
(i.e., benchmark tracking error) risk. Specifically,
the covariance matrix, �, in Eq. (2) is for security
returns that are residual to the set of unforecasted
market-wide factors.3 For example, under the one-
factor market model for security returns shown in
Eq. (3), the relative risk or benchmark tracking error
of the managed portfolio, σ2

�R, is related to active
risk by

σ2
�R = (βP − βB)2σ2

M + σ2
A (5)

where σ2
M is the estimated variance of the market

portfolio. Thus, active risk in the objective function
is only equivalent to tracking error if the managed
portfolio is constrained to have a market beta equal
to the benchmark (i.e., βP = βB in Eq. (5)).

A final comment on the objective function is that
we make no general assumptions about the inter-
nal process for generating the elements of the alpha
vector. Later we mention the implications of using
Grinold’s prescription (1994) and suggest that if
a scoring process is used, a full covariance matrix
version of Grinold’s prescription is more appropri-
ate. In the full covariance matrix alpha generation
process we propose, the vector α is informed by �.
With these caveats, we assume that the complete set
of managerial beliefs about the distributional prop-
erties of the residual returns is incorporated in α

and �. In other words, the distributional parame-
ters of security returns at the beginning of the given
period are fixed and assumed to be known by the
manager, while the realized returns at the end of
the period are random variables. We do not address
the actual accuracy of the risk model or the issue of
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stationarity over time. Although important in prac-
tical applications, these issues are outside the scope
of this paper.

2 Optimal solution

The manager’s optimization problem is to choose
active weights that maximize the utility function in
Eq. (2). The first-order condition, which involves
the differentiation of the quadratic form w′�w, is

∂U
∂w

= α − 2λ�w = 0 (6)

and solving for w gives the optimal active weight
vector as

w∗ = 1

2λ
�−1α (7)

which employs the inverse covariance matrix �−1.
The numerical procedure for inverting an N × N
covariance matrix can be computationally challeng-
ing, although the use of a factor-based risk model
helps.4 In addition to the inverse, we will employ
the symmetric square-root of the covariance matrix,
denoted �1/2, and its inverse, �−1/2, which also
involve computational algorithms.5 These square
root matrixes are unique and have matrix alge-
bra properties analogous to simple scalar algebra,
specifically �1/2�1/2 = �, �−1/2�−1/2 = �−1,
and �1/2�−1/2 = I .

To provide intuition for the optimal active weight in
Eq. (7), we assume for a moment that the covariance
matrix is perfectly diagonal (i.e., zero correlation
between residual security returns). Under this sim-
plifying assumption, the inverse correlation matrix
is also diagonal with elements 1/σ2

i and the optimal
active weight for each security is intuitively propor-
tional to the expected security return divided by
return variance;

w∗
i = 1

2λ

αi

σ2
i

(8)

We will occasionally return to the simplifying
assumption of a diagonal covariance matrix to pro-
vide intuition and interpretation of the results, but
the key innovation of this paper is to employ a
security return covariance matrix, �, that is fully
populated (i.e., nondiagonal elements need not be
zero).

The optimization problem in Eq. (2) does not
include a budget constraint that the sum of the
active weights is zero. The budget constraint in
matrix form is w′ι = 0 where ι (iota) is an N × 1
vector of 1s. We assume that the raw security alphas
are shifted by a constant to be “cash neutral” so
that the budget condition is met without a formal
constraint.6

Instead of continuing our analysis using the risk-
aversion parameter λ, we assume that the portfolio
manager expresses risk aversion in terms of an
active risk parameter σA. Substituting the optimal
weight vector solution in Eq. (7) into the definition
σ2

A ≡ w′�w, and some algebra, gives

w∗ = σA√
α′�−1α

�−1α (9)

which is the unconstrained optimization result used
in subsequent analysis. The closed-form solution
in Eq. (9) also applies to an optimization problem
that maximizes expected return subject to a limit
on active portfolio risk. In that problem, the scalar
parameter σA is simply an alternative way of express-
ing risk aversion, albeit with a hard limit on the
allowable active risk in the portfolio.

Having specified the optimization problem, we turn
our attention to the development of the fundamen-
tal law, given a full covariance matrix. We derive
four results of the law representing ex-ante and ex-
post expressions with and without constraints. First,
we present the ex-ante unconstrained case and iden-
tify the additional assumptions required to derive
the original Grinold (1989) form of the law. Second,
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we extend the unconstrained case to an attribution
equation for the ex-post or realized active return,
which requires the introduction of the realized
information coefficient and realized return disper-
sion. Third, we acknowledge the role of constraints
and expand the ex-ante law to include the transfer
coefficient developed in CST. Fourth, we present an
ex-post attribution equation for the realized active
portfolio return under constraints, which intro-
duces an additional parameter, the noise coefficient.

3 Ex-ante fundamental law without
constraints

The ex-ante form of the fundamental law is obtained
by substitution of the optimal active weight vec-
tor w∗ in Eq. (9) into the definitional relationship
E (RA) ≡ α′w and some algebra to give

E (RA)

σA
=

√
α′�−1α (10)

The ratio of expected active return to active risk in
Eq. (10) is commonly referred to as the information
ratio. The information ratio is conceptually simi-
lar to the better-known Sharpe ratio, but with an
emphasis on active versus total portfolio return and
risk. For a market-neutral strategy with the risk-free
rate as a benchmark, the information and Sharpe
ratios are synonymous.

A more familiar expression of the basic fundamental
law can be derived using the simplifying assump-
tion of a diagonal covariance matrix and Grinold’s
(1994) prescription for alpha generation. According
to the Grinold (1994) prescription, the elements of
the expected residual return vector are calculated by

αi = ICσiSi (11)

where the Si are a set of cross-sectionally zero-mean
unit-variance scores on each security, and IC is the
information coefficient, the parameter the portfolio
manager believes represents the expected correlation

coefficient between security rankings and realized
returns. By substituting Eq. (11) into Eq. (10), and
assuming a diagonal covariance matrix, we obtain

E (RA)

σA
= IC

√
N (12)

The simple Grinold (1989) fundamental law
expressed in Eq. (12) illustrates the key strategic
perspective that the ex-ante information ratio is a
product of forecasting skill as measured by the infor-
mation coefficient, and the square-root of what
Grinold (1989) defines as breadth. However, the
notion of breadth in Eq. (10) using the full covari-
ance matrix is somewhat ambiguous as discussed
later. Breadth can only be defined as N in Eq. (12)
because of the simplifying assumption of a diago-
nal security return covariance matrix. Equation (10)
represents the most we can say about the expected
information ratio without additional assumptions.

4 Ex-post fundamental law without
constraints

The fundamental law analysis in the prior section
involved expected active return. Indeed, the funda-
mental law as first presented by Grinold (1989) is
strictly an ex-ante concept; the expected informa-
tion ratio is a function of expected signal success
(information coefficient) and breadth of applica-
tion. If the portfolio is constructed using the
optimal weights, w∗, the ex-post or realized active
portfolio return for any given period is

RA = r ′w∗ (13)

Substituting the solution for optimal active weights
in Eq. (9) into the realized active portfolio return
in Eq. (13), and multiplying and dividing by the
expression

√
r ′�−1r , gives the ex-post active port-

folio return as

RA = r ′�−1α√
α′�−1α

√
r ′�−1r

√
N σA

√
r ′�−1r

N
(14)
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Note that while the variables used are vectors and
matrices, each of the four terms on the right-
hand side of Eq. (14) are scalars (i.e., single-valued
variables).

We define the first term in Eq. (14) as the realized
information coefficient

ρα,r ≡ r ′�−1α√
α′�−1α

√
r ′�−1r

(15)

The notation ρα,r connotes a covariance-adjusted
cross-sectional correlation coefficient between ele-
ments of the forecasted and realized residual security
return vectors α and r . The correlation coefficient is
a well-known bivariate statistic where the covariance
is divided by each variable’s standard deviation. The
correlation coefficient nature of Eq. (15) can be
seen by splitting the inverse covariance matrix into
square root matrices as follows

ρα,r = (�−1/2r)′(�−1/2α)√
(�−1/2α)′(�−1/2α)

√
(�−1/2r)′(�−1/2r)

(16)
Equation (16) has the form of a correlation coeffi-
cient between the elements of two N × 1 vectors,
�−1/2α and �−1/2r . For example, under the sim-
plifying assumption of a diagonal covariance matrix,
the realized information coefficient is the corre-
lation between the cross-section of risk-adjusted
expected and realized security returns,

ρα,r ≈ CORR

(
αi

σi
,

ri

σi

)
(17)

where CORR( ) is the well-known statistical func-
tion. Besides the simplifying assumption of a
diagonal covariance matrix, the approximate equal-
ity notation is used in Eq. (17) because elements
of the vectors �−1/2α and �−1/2r may have small
but nonzero means ex-post, while the common
statistical covariance and correlation functions are
based on deviations from the mean.

An econometric analogy may provide some intu-
ition. The realized information coefficient in

Eq. (17) is analogous to the weighted-least-squares
procedure in econometrics, where left- and right-
hand side variables in a regression are divided by
risk estimates as a correction for heteroskedasticity
(see Judge et al., p. 359). On the other hand, the full
covariance matrix structure in Eq. (15) is analogous
to the generalized-least-squares procedure where a
regression is estimated using a known covariance
matrix (see Judge et al., p. 329). In fact, the inverse
square root of the covariance matrix, �−1/2, is sim-
ilar to the “transformation matrix” used to adjust
both left- and right-hand side variables in the GLS
procedure. Much of what is derived in this paper
with respect to both realized and ex-ante fundamen-
tal law parameters can be seen as a GLS extension
to Clarke et al. (2002), followed by a GLS exten-
sion of the alpha generation prescription in Grinold
(1994).

We define the final term in Eq. (14) as the
covariance-adjusted realized return dispersion

D ≡
√

r ′�−1r
N

(18)

By splitting the inverse correlation matrix, as in
Eq. (16), Eq. (18) can be seen as the matrix equiva-
lent of a standard deviation function. For example,
under the simplifying assumption of a diagonal
covariance matrix we have

D ≈ STD

(
ri

σi

)
(19)

where STD( ) is the well-known statistical function
and the equivalence is only approximate because
of a potentially nonzero mean in realized risk-
adjusted residual returns. Because realized residual
returns are normalized by their estimated risk, the
expected value of the return dispersion in Eq. (18)
is approximately 1.7

Substituting the definitions in Eqs. (15) and (18)
into Eq. (14) gives a surprisingly simple and con-
ceptually useful decomposition of the realized active
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portfolio return in the absence of constraints

RA = ρα,r
√

N σAD (20)

Performance attribution is facilitated by the decom-
position of the realized active return into the
success of the ranking process as measured by
the covariance-adjusted realized information coeffi-
cient, ρα,r , two ex-ante parameters (the number of
securities and active risk), and covariance-adjusted
realized return dispersion, D. Equation (20) is
exact if the full-covariance matrix formulas are used
for ρα,r and D. Finally, the ex-ante expression in
Eq. (10) is reconfirmed by taking the expectation
of both sides of Eq. (20).8

5 Ex-ante fundamental law under constraints

Portfolio managers rarely construct their portfo-
lios using the exact closed-form optimal active
weights shown in Eq. (9). Rather, managers feed the
expected return vector, α, and covariance matrix,
�, into a numerical optimizer under various con-
straints with the specification that active risk should
not exceed the ex-ante parameter value σA. For-
mal constraints such as long-only security positions,
turnover restrictions, and maximum individual
position sizes, as well as minimum trading units and
transaction costs, all result in actual active weights,
w, that deviate from optimal weights, w∗. The
actual active weights do not have a closed-form
solution but do have two mathematical restrictions.
First, they must sum to zero based on the budget
constraint. Second, to allow for a relevant compar-
ison with previous results we assume that the active
risk of the constrained portfolio is equal to that of
the unconstrained case, σA, so that

w′�w = w′∗�w∗ = σ2
A (21)

Substituting the actual active weights into the
expected active portfolio return, E (RA) ≡ α′w,

dividing and multiplying by the terms
√

α′�−1α

and
√

w′�w, and using Eq. (21), we have

E (RA) = α′w√
α′�−1α

√
w′�w

√
α′�−1α σA (22)

This motivates an ex-ante parameter that measures
the correlation between the expected returns, α, and
the actual active weights taken, w. We define the
full-covariance matrix transfer coefficient as

TC ≡ α′w√
α′�−1α

√
w′�w

(23)

Note that the value of the transfer coefficient using
unconstrained optimal active weights from Eq. (9)
is exactly 1.9 Following analysis like that used in
the covariance-adjusted realized information coef-
ficient in Eq. (16), the correlation coefficient nature
of the transfer coefficient is

TC = (�−1/2α)′(�1/2w)√
(�−1/2α)′(�−1/2α)

√
(�1/2w)′(�1/2w)

(24)
Equation (24) has the form of a correlation coef-
ficient between the N elements of vectors �−1/2α

and �1/2w. For example, under the simplifying
assumption of a diagonal covariance matrix, the
transfer coefficient is the correlation coefficient
between the cross-section of risk-adjusted expected
security returns and risk-weighted active weights,

TC ≈ CORR

(
αi

σi
, wiσi

)
(25)

Substituting the transfer coefficient definition from
Eq. (23) into Eq. (22) gives

E (RA) = TC
√

α′�−1α σA (26)

A comparison of the constrained expected active
return in Eq. (26) to the unconstrained value in
Eq. (10) shows that the ex-ante impact of con-
straints is precisely measured by the transfer coef-
ficient, TC, when fundamental law parameters are
calculated using the full covariance matrix.
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6 Ex-post fundamental law under constraints

The ubiquitous imposition of formal constraints in
the optimization routines used by portfolio man-
agers leads to actual security weights, w, that deviate
from the optimal weights, w∗, when the constraints
are binding. Define the N × 1 weight-not-taken
vector as

c ≡ w − TCw∗ (27)

The weight-not-taken for each security represents
the difference between the portfolio’s actual weight
and the expected weight, given the proportional
impact of constraints measured by the transfer coef-
ficient. The correlation between this mismatch and
subsequent security returns will result in a type of
unexpected noise. The elements of vector c sum to
zero because the sets of actual and optimal active
weights both sum to zero. We need to determine
the value of the quadratic term c ′�c, which is used
in our final proof. The definition in Eq. (27) and
some algebra (using Eqs. (9), (21), and (23)) gives

c ′�c = (1 − TC2)σ2
A (28)

The realized active return to the portfolio using
actual active weights is RA = r ′w. Using the defi-
nition of optimized constrained weights-not-taken
in Eq. (27) with some algebra (using Eqs. (9), (15),
(18), and (28)) gives

RA = r ′(TCw∗ + c)

=
(

TCρα,r + (1 − TC2)1/2r ′c√
r ′�−1r

√
c ′�c

)
D

√
N σA

(29)

We define a final parameter called the realized
noise coefficient, which measures the unexpected
performance noise due to constraints;

ρc,r ≡ r ′c√
r ′�−1r

√
c ′�c

(30)

The noise coefficient can be characterized as the
covariance adjusted cross-sectional correlation coef-
ficient between weights-not-taken and realized

security returns; more formally the N elements
of the vectors �1/2c and �−1/2r . Substituting
Eq. (30) into the final form of Eq. (29), and reorder-
ing terms, gives the complete decomposition of the
realized active portfolio return under constraints

RA = (TCρα,r + (1 − TC2)1/2ρc,r )
√

N DσA

(31)
Equation (31) provides a complete decomposition
of realized active portfolio return into parame-
ters that measure signal performance, the expected
and realized impact of portfolio constraints, and
covariance-adjusted realized security return disper-
sion. In contrast to the ex-post result in CST,
Eq. (31) is exact and based on the relaxed assump-
tion of a nondiagonal residual return covariance
matrix. For purposes of performance attribution,
Eq. (31) can be rearranged into two terms that
represent the signal and noise contributions to the
realized active portfolio return;

RA = TCρα,r
√

N DσA

(Signal contribution)
+ (1 − TC2)1/2ρc,r

√
N DσA

(Noise contribution)

(32)

The portfolio’s realized active return under con-
straints has been exactly decomposed into param-
eters that have meaning to the portfolio manager,
including the transfer coefficient, the covariance-
adjusted realized information coefficient and real-
ized return dispersion, the number of securities,
and a noise term. The noise term can be thought
of as the portion of the realized active return not
explained by the signal contribution. The results in
Eq. (26), or direct application of the expectations
operator in Eq. (32) similar to Footnote 8, indicates
that the expected value of the noise term is zero.
Besides a performance attribution framework that
completely decomposes the actual return, Eq. (32)
gives the investor insights about the reduction
in potential value added due to constraints as
explained in Clarke et al. (2005).
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7 The breadth parameter and alpha generation

The full-covariance matrix fundamental law equa-
tions derived in this paper reflect the returns from
N securities in the investment universe, where N
is not necessarily equivalent to breadth. While the
notion of breadth conveys important intuition in
active management, breadth is hard to measure in
practice when residual security returns are corre-
lated to each other in complex ways as embodied
in the covariance matrix, and when the security
ranking system is generally correlated to various risk
factors. For example, if industry membership is cap-
tured in the covariance matrix of residual returns,
then a set of security alphas that tends to place all
the securities of a particular industry together has
lower breadth than a system where the alphas are
cross-sectionally uncorrelated to industry member-
ship. Buckle (2004) provides some intuition on the
breadth parameter using simple covariance matri-
ces where all of the off-diagonal elements are equal.
Alternatively, one can conduct breadth analysis
under the more general assumption of a factor-based
risk model. For example, even under a full (i.e.
nondiagonal) covariance matrix, it can be shown
that breadth is equal to the number of securities
if the alpha vector is perfectly orthogonal to each
of the risk-model factors.10 While the number of
securities, not breadth, is the parameter employed
in the full covariance equations derived in this paper,
the concept of breadth is commonly associated with
the fundamental law theory and thus suggests some
comment. Below we provide a practical approx-
imation of implied breadth and demonstrate its
dependence on the alpha generation procedure.

To motivate a more general measure of breadth if
one finds that concept helpful, consider Eq. (10),
which gives the expected value of the information
ratio for the unconstrained portfolio. Grinold
(1989) suggests that the expected information ratio
equals the expected information coefficient times
the square root of breadth. Using this framework

and Eq. (10) allows breadth to be defined for
any given set of expected returns, α, and risk
model, �, as

Breadth = α′�−1α

IC2 (33)

where IC is the information coefficient used to
generate security alphas. Under the simplifying
assumption of a diagonal covariance matrix and
Grinold’s (1999) alpha process, the breadth param-
eter implied by Eq. (33) is the number of securities.

As mentioned earlier, the concept of breadth is
more ambiguous and perhaps less relevant under
the assumption of a full covariance matrix. Further,
since implied breadth as calculated in Eq. (33) is
based on the unconstrained information ratio of
Eq. (10), the practical reality of constraints reduces
strategy breadth by a proportion equal to the trans-
fer coefficient TC. To provide some intuition for
breadth, consider a simple two security benchmark
where the single off-diagonal element of the 2 × 2
correlation matrix is ρ and the two elements on the
diagonal are equal (i.e., two securities with equal
residual return variances). The only possible scores
with a cross-sectional mean zero and unit variance
scores for N = 2 are +1 and −1. Using Grinold’s
(1994) alpha prescription in Eq. (11), the proce-
dures for matrix inversion and multiplication gives
breadth as defined in Eq. (33) of 2(1 + ρ)/(1 − ρ).
Thus, for a pair of highly correlated securities with
say ρ = 0.8, breadth is 18.0. Breadth is relatively
large (nine times the number of securities) because
the differential ranking of highly correlated secu-
rities is almost an arbitrage. Alternatively, if the
off-diagonal element of the correlation matrix is
ρ = −0.8, then implied breadth is only 0.22.
Breadth is now almost zero because the differential
ranking between the two securities simply reflects
their highly negative correlation as given by the risk
model. Note that these breadth inferences rest on
the assumption that the manager’s forecast of resid-
ual security returns are made with an awareness of
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what the risk model predicts about their correlation
structure. If, on the other hand, the manger’s rank-
ing process for securities is made without reference
to the risk model, one might want to modify the
alpha generation process as discussed below.

In practice, many portfolio managers rank securities
by some scoring process without reference to the
residual correlations predicted by the risk model.
In other words, the relative values of the individual
elements in α are assigned by the manager without
reference to the off-diagonal values assumed in �.
Although fairly common, this practice seems inter-
nally inconsistent if residual return correlations are
material. We introduce an alpha generation process
analogous to the full covariance matrix definitions
of realized information coefficient and transfer coef-
ficient developed in prior sections. In the spirit of
Grinold’s (1994) prescription in Eq. (11), the alpha
vector is generated from raw scores using the square
root residual security return covariance matrix as
follows

α = IC�1/2S (34)

where S is an N × 1 vector of mean-zero unit-
variance scores. The alpha generation procedure in
Eq. (34) can be thought of as the GSL equivalent to
Grinold’s (1994) prescription, and is in fact alluded
to in Footnote 10 of that paper.

Besides internal consistency, one of the virtues of
the full covariance matrix alpha generation process
in Eq. (34) is that breadth as defined in Eq. (33)
is now equal to the number of securities. Specifi-
cally, substitution of the full covariance matrix alpha
generation process in Eq. (34) into Eq. (33) gives

Breadth = (IC�1/2S)′�−1(IC�1/2S)

IC2 = S ′S

=
N∑

i=1

s2
i = N (35)

where the last step in Eq. (35) assumes that individ-
ual security scores, si , have a cross-sectional mean of
zero and unit variance. Conceptually, when alphas
are constructed using all of the information embed-
ded in the covariance matrix, the breadth of the
strategy is by definition equal to the number of
securities. Note, however, that using the breadth
parameter for assessing the potential value added
by an active management strategy as described by
Grinold (1989) also requires the information coef-
ficient, and the value of the information coefficient
is by definition dependent on the alpha genera-
tion procedure. Thus, breadth and the information
coefficient are codependent in the alpha genera-
tion process, which lessens their separate strategic
insights in a full covariance matrix context. We note
that the development of the full covariance matrix
fundamental law equation in the prior sections of
this paper does not assume any specific alpha gener-
ation procedure and as a result the notion of breadth
is somewhat ambiguous unless more is assumed
about the alpha generating process.

8 Numerical example using the EAFE index

As a numerical example of the full covariance matrix
fundamental law theory, we employ the EAFE inter-
national equity index with the 21 member countries
representing individual securities. We use as a proxy
for the general market portfolio the MSCI World
Index that includes all 23 countries (adding the
US and Canada). We choose September 2004 as
a recent month with typical realized return results.
For purposes of illustration, the market risk model
is simply the covariance matrix of the historical
dollar-based excess returns for the prior 60 months
(September 1999 to August 2004). The residual
return covariance matrix is then calculated using the
market betas from the total return covariance matrix
as specified in Footnote 2. In practice, simple histor-
ical covariance calculations are generally considered
inadequate predictive risk models and portfolio
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managers employ more sophisticated factor-based
matrices with GARCH estimators and other econo-
metric enhancements. The forecast signals for this
simple example are a set of standard normal scores
that are randomly assigned to the 21 countries in
the EAFE benchmark. In practice, a portfolio man-
ager would use some proprietary process for ranking
securities within the investable set. In illustrating
the calculations in this section we take as given the
forecasts and the calculations are not dependent on
the precise forecasting procedure used.

To illustrate the impact of constraints, we optimize
a long-only (i.e., no-short-sell constrained) portfo-
lio with the additional restriction that the absolute
active weight on any single country does not exceed
20 percent. The EAFE benchmark weights are prior
month-end (end of August 2004) and the realized
returns are the actual returns in excess of the risk-free
rate for each country as reported by MSCI dur-
ing September 2004. Using a small (21-country)
numerical example allows us to report data on the
entire set of countries, including the forecasted and
realized residual returns and most of the param-
eters in the risk model. We optimize under an
active risk constraint of 1.00 percent monthly, and
an assumed IC of 0.100. While not essential to
the illustration, we also impose a constraint that
the managed portfolio has a global market beta
equal to the EAFE benchmark so that the net
active market beta is zero. Under this constraint,
the active risk and tracking error of the managed
portfolio are identical, as shown in Eq. (4). Calcu-
lations are preformed in Excel, including matrix
inversion and numerical optimization (i.e. Excel
Solver) except for the matrix square root calcula-
tions, which employ a characteristic root procedure
in SAS.

Table 1 shows the main optimization results, with
risk model details given in Table 2 and fore-
casted and realized return details given in Table 3.
All of the return and risk parameters in the

tables are nonannualized values for the one-month
investment horizon. The first column in the lower
half of Table 1 shows the 21 countries in the EAFE
index sorted by their benchmark weights in the next
column. While the number of countries is small,
the concentration of the benchmark weights in the
larger countries is indicative of most capitalization-
weighted equity indexes. For example, almost half
of the total benchmark is in the two largest coun-
tries, the United Kingdom and Japan, and several
of the smaller countries have less than a 1 per-
cent benchmark weight. The next two columns in
Table 1 show the constrained optimal active weight
and resulting total managed portfolio weight for
each country. Notice that none of the managed
portfolio weights are negative due to the no-short-
sell constraint and thus none of the smaller countries
have materially negative active weights. This illus-
trates the typical problem of a small-capitalization
bias in short-sell constrained portfolios that are
not simultaneously constrained to be market-cap
neutral with respect to the benchmark.

The next column in Table 1 shows the alpha
(expected residual return) vector, with details on
the alpha generation process shown in Table 3. Raw
alphas are generated from a set of normally dis-
tributed scores that are randomly assigned to each
country and then calculated using the full covari-
ance technique shown in Eq. (34). We later consider
the same case using the Grinold (1994) prescription
for alpha generation and discuss the breadth impli-
cations. Table 3 shows that the final alphas are cash
neutral (as explained in Footnote 6) by applying a
constant shift of about eight basis points to the raw
alphas. Table 3 also gives the details on calculating
realized residual returns from the MSCI returns for
September 2004. As specified in Eq. (3), the risk-
free rate (about 15 basis points in September 2004)
is subtracted first, and then the returns are adjusted
for each country’s market-wide beta as given in
Table 2. The final three columns in Table 1 are
the unconstrained optimal active weights (Eq. (9)),
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Table 1 Fundamental law example EAFE September 2004.

Constraint set and IC parameter Realized active return calculation
1) Long only constraint Portfolio return 1.21%
2) Country active weight Benchmark return 0.80%

constraint 20% Active return 0.41%
3) Net market beta exposure 0.000
4) Active risk limit/month 1.00% Fundamental law parameters
Assumed information coefficient 0.100 Realized information coefficient 0.068

Transfer coefficient 0.671
General calculations Realized noise coefficient 0.058
Optimal information ratio 0.450 Number of securities 21.0
Implied breadth 20.3 Realized dispersion 1.005

Ex-ante information ratio Active return decomposition
Expected active return/month 0.30% Signal contribution 0.21%
Ex-ante active risk/month 1.00% Noise contribution 0.20%
Information ratio 0.302 Explained active return 0.41%

Constrained Unconstrained optimized

Benchmark Active Portfolio Expected Active Weight- Realized
Country weight (%) weight (%) weight (%) alpha (%) weight (%) not-taken return

United Kingdom 25.4 −0.2 25.2 0.13 21.2 −14.4 1.55
Japan 23.5 −5.2 18.3 −0.05 1.5 −6.2 −3.77
France 9.2 −9.2 0.0 −0.23 −32.8 12.8 1.18
Switzerland 7.0 −7.0 0.0 −0.25 −9.0 −0.9 1.07
Germany 6.6 −6.6 0.0 −0.23 −6.5 −2.2 2.51
Australia 5.1 −5.1 0.0 −0.68 −19.2 7.8 5.08
Netherlands 4.7 16.2 20.9 0.12 20.9 2.2 −0.09
Italy 3.8 −3.8 0.0 0.11 3.9 −6.4 3.93
Spain 3.6 −0.1 3.5 0.18 3.7 −2.5 1.83
Sweden 2.4 −2.4 0.0 −0.26 3.0 −4.4 4.70
Hong Kong 1.8 −1.8 0.0 −0.54 −6.3 2.5 −0.09
Finland 1.3 2.4 3.7 −0.01 0.7 1.9 7.87
Belgium 1.2 −1.2 0.0 −0.11 −7.5 3.8 5.78
Singapore 0.9 −0.9 0.0 −0.61 0.3 −1.1 3.29
Ireland 0.8 7.3 8.1 0.28 4.4 4.3 3.13
Denmark 0.8 −0.8 0.0 0.13 −1.5 0.2 4.41
Norway 0.5 −0.5 0.0 −0.02 9.2 −6.7 9.47
Greece 0.5 −0.5 0.0 −0.84 −2.5 1.2 2.65
Portugal 0.4 20.0 20.4 0.75 14.0 10.6 4.52
Austria 0.3 −0.3 0.0 −0.05 −2.3 1.2 3.75
New Zealand 0.2 −0.2 0.0 −0.42 5.0 −3.6 5.17

Total 100.0 0.0 100.0 0.0 0.0

THIRD QUARTER 2006 JOURNAL OF INVESTMENT MANAGEMENTNot for Distribution



66 ROGER CLARKE ET AL.

Table 2 Risk assumptions.

Total Residual
Market return Market return

Country weight (%) Std Dev (%) beta Std Dev (%)

United Kingdom 10.75 4.40 0.857 2.01
Japan 9.94 5.70 0.728 4.63
France 3.90 6.09 1.164 2.97
Switzerland 2.96 4.68 0.737 3.26
Germany 2.79 7.94 1.477 4.20
Australia 2.16 5.12 0.813 3.53
Netherlands 1.99 6.23 1.181 3.12
Italy 1.59 6.03 0.910 4.37
Spain 1.51 6.35 1.105 3.85
Sweden 1.01 9.36 1.669 5.43
Hong Kong 0.74 6.47 0.940 4.84
Finland 0.55 12.70 1.751 9.86
Belgium 0.53 6.39 0.924 4.80
Singapore 0.37 6.93 0.921 5.51
Ireland 0.35 5.83 0.897 4.15
Denmark 0.33 5.65 0.953 3.59
Norway 0.23 6.12 1.085 3.58
Greece 0.20 8.44 0.794 7.62
Portugal 0.15 6.36 0.856 5.01
Austria 0.13 4.99 0.486 4.47
New Zealand 0.10 6.09 0.730 5.09
United States 55.00 4.86 1.036 1.12
Canada 2.73 6.01 1.107 3.25

Market (World) 100.00 4.57 1.000

Residual return correlation matrix (first six countries only)

UK Japan France Switzerland Germany Australia . . .

UK 1.000 −0.290 0.350 0.481 0.189 −0.120 . . .

Japan −0.290 1.000 −0.340 −0.072 −0.418 0.204 . . .

France 0.350 −0.340 1.000 0.406 0.750 0.060 . . .

Switzerland 0.481 −0.072 0.406 1.000 0.186 0.058 . . .

Germany 0.189 −0.418 0.750 0.186 1.000 −0.003 . . .

Australia −0.120 0.204 0.060 0.058 −0.003 1.000 . . .

. . . . . . . . . . . . . . . . . . . . . . . .
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Table 3 September 2004 forecasted and realized returns.

Cash
Raw neutral Total Excess Residual

Country Score alpha (%) alpha (%) return (%) return (%) return (%)

United Kingdom 1.51 0.21 0.13 3.22 3.07 1.55
Japan 0.38 0.04 −0.05 −2.33 −2.48 −3.77
France −1.51 −0.14 −0.23 3.40 3.25 1.18
Switzerland −0.82 −0.17 −0.25 2.53 2.38 1.07
Germany −0.66 −0.14 −0.23 5.28 5.13 2.51
Australia −2.04 −0.60 −0.68 6.67 6.52 5.08
Netherlands 1.22 0.20 0.12 2.16 2.01 −0.09
Italy 0.51 0.19 0.11 5.69 5.54 3.93
Spain 0.82 0.26 0.18 3.94 3.79 1.83
Sweden −0.25 −0.18 −0.26 7.81 7.66 4.70
Hong Kong −1.00 −0.46 −0.54 1.72 1.57 −0.09
Finland 0.12 0.07 −0.01 11.13 10.98 7.87
Belgium −0.51 −0.03 −0.11 7.57 7.42 5.78
Singapore −0.38 −0.53 −0.61 5.07 4.92 3.29
Ireland 1.00 0.36 0.28 4.87 4.72 3.13
Denmark 0.25 0.21 0.13 6.25 6.10 4.41
Norway 0.66 0.07 −0.02 11.55 11.40 9.47
Greece −1.22 −0.76 −0.84 4.21 4.06 2.65
Portugal 2.04 0.84 0.75 6.19 6.04 4.52
Austria 0.00 0.03 −0.05 4.76 4.61 3.75
New Zealand −0.12 −0.34 −0.42 6.62 6.47 5.17

Average 0.00 −0.04 −0.12 5.16 5.01 3.24

the optimized weight-not-taken due to constraints
(Eq. (27)), and the realized residual returns for each
country from Table 3.

The top half of Table 1 provides key results
on the fundamental law calculations, portfolio
optimization, and realized return decomposition.
The expected information ratio of the portfo-
lio when unconstrained is 0.450 and is calcu-
lated using Eq. (10) using the assumptions in
the illustration. The implied breadth of 20.3,
calculated using Eq. (33), is close to the number

of securities because the raw alphas are gener-
ated using the full-covariance matrix procedure
given in Eq. (34). Implied breadth is not exactly
21.0 because of the cash-neutralization shift in
alphas. The expected active return of the portfo-
lio when constrained is 30 basis points, and when
divided by the estimated active risk (limited to
100 basis points by the optimizer) the expected
information ratio is 0.302 (displayed results induce
some rounding error). Thus, the reduction in
the expected information ratio due to portfolio
constraints implies a transfer coefficient of about
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0.302/0.450 = 0.671. The full-covariance trans-
fer coefficient, calculated directly from Eq. (23),
is 0.671 as shown in the upper right-hand
corner of Table 1. This comparison validates the
ex-ante fundamental law mathematics summarized
in Eq. (26).

The upper right-hand corner of Table 1 contains
the details of the realized active return decomposi-
tion. The managed portfolio realized return of 121
basis points minus the benchmark return of 80 basis
points gives an active portfolio return of 41 basis
points. The full-covariance realized information
coefficient for September 2004 is 0.068, slightly
below the expected value (IC parameter) of 0.100.
In this particular month, the noise coefficient hap-
pened to be positive at 0.058, compared with an
expected value of zero. A key implication of the
ex-post fundamental law is that even for a rela-
tively high TC value of 0.671, the impact of any
given realized noise coefficient is greater than the
impact of the signal as measured by the infor-
mation coefficient. As shown in Eq. (31), the
information coefficient multiplier is TC = 0.671,
while the multiplier for the noise correlation coef-
ficient is (1 − TC2)1/2 = 0.741. Thus, while the
absolute magnitude of the information coefficient
in September 2004 is materially greater than the
realized noise correlation coefficient, the signal con-
tribution of 21 basis points is only slightly greater
than the noise contribution of 20 basis points.
The sum of the signal and noise contributions in
the attribution system is 41 basis points, which
exactly matches the direct calculation (managed
portfolio return minus the benchmark return). This
comparison validates the ex-post fundamental law
mathematics of the attribution system summarized
in Eq. (32).

For comparison purposes, we also calculate the fun-
damental law parameters for September 2004 using
simple fundamental law definitions as described in
Grinold (1989) and CST. Under the assumptions

used in previous developments of the fundamental
law, the ex-ante and ex-post equations are approx-
imate for two reasons. First, well-known statistical
functions (e.g., standard deviation) are based on
deviations from mean cross-sectional security val-
ues, which may not be exactly zero ex-post. The
“zero-means” assumption is particularly damag-
ing in the EAFE example because of the small
number of countries (i.e. 21) in the investable
universe. As explained in CST, the assumption of
zero means is not as damaging for larger universes
(e.g. S&P 500 benchmark). Second, the fundamen-
tal law parameters in previous developments are
based on an assumed diagonal covariance matrix
when in fact numerical optimization is generally
conducted using the full covariance matrix. As
shown in the risk-model summary in Table 2, this
assumption is particularly invalid for the coun-
tries in the EAFE index. In fact, the rich structure
of the cross-sectional correlations among countries
was the primary motivation for choosing the EAFE
benchmark with countries acting as securities as an
illustration of the full covariance matrix fundamen-
tal law mathematics. Our concern in this paper is
a generalization of the second concern above, and
so we calculate the various fundamental law param-
eters using an assumed diagonal covariance matrix
but with statistical functions that do not require
zero means.11

The transfer coefficient calculated based on a diag-
onal covariance matrix assumption is 0.620 com-
pared with the full-matrix value of 0.671 shown
in Table 1. The full-matrix TC is intuitively larger
because it acknowledges the nondiagonal residual
return correlations in the risk model supplied to
the optimizer. This specific comparison is depen-
dent on the assignment of scores and realized return
used in the base-case example, but experiments
with other random assignments of the 21 scores
to countries verify that the full-covariance matrix
TC is generally higher than a diagonal-matrix cal-
culation. We also calculated other fundamental law
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Table 4 Alternative cases of implied breadth.

Euro/Pacific
Score Assignment Base case Base case dichotomy

Alpha Generation Full Covariance Diagonal Covariance Diagonal Covariance

Country Score alpha (%) Score alpha (%) Score alpha (%)

United Kingdom 1.51 0.13 1.51 0.10 0.56 0.22
Japan 0.38 −0.05 0.38 −0.02 −1.79 −0.72
France −1.51 −0.23 −1.51 −0.65 0.56 0.28
Switzerland −0.82 −0.25 −0.82 −0.46 0.56 0.29
Germany −0.66 −0.23 −0.66 −0.47 0.56 0.35
Australia −2.04 −0.68 −2.04 −0.92 −1.79 −0.52
Netherlands 1.22 0.12 1.22 0.18 0.56 0.29
Italy 0.51 0.11 0.51 0.03 0.56 0.36
Spain 0.82 0.18 0.82 0.12 0.56 0.33
Sweden −0.25 −0.26 −0.25 −0.33 0.56 0.41
Hong Kong −1.00 −0.54 −1.00 −0.68 −1.79 −0.76
Finland 0.12 −0.01 0.12 −0.08 0.56 0.66
Belgium −0.51 −0.11 −0.51 −0.44 0.56 0.38
Singapore −0.38 −0.61 −0.38 −0.41 −1.79 −0.87
Ireland 1.00 0.28 1.00 0.21 0.56 0.34
Denmark 0.25 0.13 0.25 −0.11 0.56 0.31
Norway 0.66 −0.02 0.66 0.04 0.56 0.31
Greece −1.22 −0.84 −1.22 −1.13 0.56 0.54
Portugal 2.04 0.75 2.04 0.82 0.56 0.39
Austria 0.00 −0.05 0.00 −0.20 0.56 0.36
New Zealand −0.12 −0.42 −0.12 −0.26 −1.79 −0.80

Average 0.00 −0.12 0.00 −0.22 0.00 0.10
Standard Deviation 1.00 0.36 1.00 0.42 1.00 0.48

Optimal IR 0.450 0.796 0.374
Assumed IC 0.100 0.100 0.100
Implied breadth 20.3 63.4 14.0

parameters (e.g., the realized information coeffi-
cient) using the diagonal-matrix assumption and
found material discrepancies. While inaccurate, no
directional bias in these parameters was noted in
alternative assignments of the base-case scores we
examined.

Table 4 summarizes the results of experiments with
alternative score vectors to illustrate the concept of
implied breadth. The alternative cases are based on
the same risk model shown in Table 2, but with
different score vectors or alpha generation proce-
dures. The first case in Table 4 is the base case

THIRD QUARTER 2006 JOURNAL OF INVESTMENT MANAGEMENTNot for Distribution



70 ROGER CLARKE ET AL.

discussed above. The implied breadth of 20.3 using
Eq. (33) is quite close to the number of countries
because the raw alpha vector is generated using the
full covariance matrix. Table 4 next shows results
using the Grinold (1994) alpha generation proce-
dure in Eq. (11) but using the same standardized
scores as in the base case. The implied breadth of
63.4 is the breadth of the strategy under the assump-
tion that the scores were established by the portfolio
manager with an understanding of the large resid-
ual return correlations in the risk model. In other
words, 63.4 is the implied breadth of the base case
signal if the inherent correlations between residual
security returns had already been accounted for in
developing the standardized scores.

The concept of implied breadth is illustrated again
in the third case in Table 4. The scores are assigned
to countries based on a dichotomous signal where
the 16 European countries are given a single higher
rank and the 5 Pacific counties are given a single
lower rank. The two score values (0.56 and −1.79)
are set so that the mean is 0 and the variance is 1
for the sample size of 21. This case represents a
relatively narrow forecast that the European region
will outperform the Pacific region over the next
month. An examination of the risk model’s resid-
ual return correlation matrix in Table 2 indicates
positive correlations within each region. For exam-
ple, the residual correlation between the United
Kingdom and France is 0.350 and the correlation
between Japan and Australia is 0.204. In con-
trast, the correlations between countries in different
regions are often negative, for example the United
Kingdom to Japan correlation is −0.290.12 Geo-
graphical region appears to be one of the major
drivers in the covariance matrix of residual returns,
and a dichotomous signal based on region leads to
the fairly low implied breath of 14.0 as shown in
Table 4. The implied breadth of the dichotomous
region signal is still greater than 1 because region is
only one of the many factors that explain the covari-
ance structure between countries. In contrast, if the

dichotomous scores are assigned arbitrarily (i.e., the
UK and every 5th country thereafter gets a negative
score), the implied breadth is much higher at 58.6
(not shown) because the scores do not align with any
implicit risk factor. In other words, the low implied
breadth based on region is not simply an artifact
of a dichotomous score. These examples illustrate
that the concept of implied breadth is somewhat
ambiguous and is linked to the assumptions under-
lying the process used to develop forecasts for the
residual returns.

9 Conclusion

We have generalized the fundamental law of active
management to allow for a fully populated covari-
ance matrix and have shown that the parsimony of
the ex-ante (expected) and ex-post (realized) active
return equations in previous studies is preserved.
In fact, the resulting equations are more exact in
that fewer simplifying assumptions are required
in the derivations. Additionally, the equations we
derive employ the number of securities rather than
the concept of breadth, which is ambiguous when
residual returns are materially correlated. Transfer
coefficients, realized information coefficients, and
other fundamental law parameters calculated using
all of the security correlation information in the risk
model should provide portfolio managers with bet-
ter insights about the potential for value added and
more precise attributions of realized performance.
For example, the ex-ante transfer coefficient cal-
culated without the off-diagonal elements of the
covariance matrix tends to understate the degree
to which the signal is translated into active posi-
tions. Similarly, an ex-post realized information
coefficient that ignores the cross-sectional correla-
tion structure of the security returns can understate
or overstate the success of the signal. As a result the
proportion of actual return attributed to the success
of the forecasting process in contrast to the residual
impact of the constraint set will be distorted.
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In addition to the generalization of the fundamen-
tal law, we describe an alpha generation procedure
that incorporates the full covariance matrix. Alphas
generated from standard normal scores by this pro-
cedure are conceptually superior to alphas that only
account for heteroskedasticity across securities. The
procedure is particularly relevant when the pro-
cess for scoring and ranking securities is conducted
without the perspective of the security correlations
given in the risk model. Finally, we illustrate the
concept of implied breadth in the traditional fun-
damental law and show that breadth is definitionally
equal to the number of securities when alphas are
generated using the full covariance matrix. Oth-
erwise, the concept of implied breadth is more
ambiguous.

The practical significance of the full covariance
enhancements to existing fundamental law theory
depends on the materiality of the off-diagonal ele-
ments in the residual return covariance matrix. For
example, while cross-correlations between US stock
returns remain after accounting for market beta,
they will be less material after also removing expo-
sures to size, value, industry, and other factors.
Thus, for our numerical illustration we choose the
EAFE index with 21 countries and a simple one-
factor global market model that has large positive
and negative cross-correlations between country
residual returns. The numerical example verifies the
matrix mathematics behind the ex-ante and ex-post
equations we develop and provides an interesting
illustration of both the strategic and performance
attribution applications of the full covariance matrix
fundamental law.
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Notes

1 Other recent extensions and applications of the fundamen-
tal law framework include Buckle (2004) who analyzes
breadth, Sorensen et al. (2004) who consider multiple
sources of alpha, and Clarke et al. (2005) who discuss
performance attribution.

2 The M ×1 vector of security betas with respect the general
market are calculated from a total return covariance matrix,
�R, by the equation β = �Rw M/w′

M�Rw M, where w M

is an M × 1 vector of market portfolio weights. Note
that the general market may have more securities than the
benchmark; M ≥ N . Security betas calculated in this
manner have a market-weighted average value of exactly 1
by definition.

3 Under the one-factor market model, the residual return
covariance matrix is computed from the total return covari-
ance matrix, �R, by the matrix equation � = �R −
(�RwMw′

M�R/w′
M�RwM), where wM is the vector of

security weights in the market portfolio. In the special case
where the benchmark and market portfolios are identical,
the residual covariance matrix � has rank N −1 and is not
invertible. Specifically, the benchmark-weighted average
residual security return is exactly zero in both expectation
and realization, so the N th residual is a linear function of
the other N − 1 residuals.

4 In general, inverting an N ×N covariance matrix for large
security sets (e.g. 500) is computationally demanding, and
for non–factor-based risk models there is no assurance that
the matrix inverse exists. A factor-based risk model has the
form � = XFX ′ + �, where X is an N × K security-
to-factor exposure matrix, F is a K × K factor covariance
matrix, and � is an N × N diagonal idiosyncratic risk
matrix. The general form of the inverse covariance matrix
is �−1 = �−1+�−1X (F −1+X ′�−1X )−1X ′�−1, which
requires the less computationally demanding inverse of
two K ×K matrices and the trivial inverse of the diagonal
matrix �.

5 The symmetric square-root of � is found by decomposing
it into an orthogonal eigenvector matrix E (i.e. E−1 =
E ′) and associated diagonal eigenvalue matrix 
 such that
� = E
E ′. Taking the square root of the elements of

 gives 
1/2, and then by direct computation �1/2 =
E
1/2E ′.

6 Cash neutral alphas which ensure that the budget con-
straint is met (i.e., that the closed-form optimal active
weights sum to zero) are calculated by a constant shift in
the elements of the raw alpha vector given by α = αRAW −
(ι′�−1αRAW/ι′�−1ι)ι. As noted in Grinold and Kahn
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(1994), page 418, this shift is based on the mathematics
of the minimum variance portfolio.

7 The expectation is not exactly 1 for various technical rea-
sons related to the fact that an N − 1 divisor rather than
N is required for a sample standard deviation to be an
unbiased forecast of the population parameter.

8 Taking the expectation of both sides of Eq. (20)
gives E (RA) = E (ρα,r D)

√
N σA = (E (r ′�−1α)/√

α′�−1α)σA = √
α′�−1ασA. Note that the expectation

operator cannot in general be distributed across the prod-
uct of ex-post parameters ρα,r and D because they are not
independent random variables.

9 Using the optimal active weights in Eq. (9), we
have TC = α′w∗/

√
α′�−1α

√
w′∗�w∗ = α′�−1α/√

α′�−1α
√

α′�−1��−1α = 1.
10 Given a K -factor risk-model; � = XFX ′ + �, the

inverse covariance matrix is �−1 = �−1 + �−1X (F −1 +
X ′�−1X )−1X ′�−1 and the information ratio squared
in Eq. (12) is α′�−1α = α′�−1α + α′�−1X (F −1 +
X ′�−1X )−1X ′�−1α. Under Grinold’s (1994) alpha pre-
scription, the first term is α′�−1α = IC2N . The second
term can be written as A′G−1A, where G is some square
matrix, and A is a K × 1 vector with elements ak =∑

Xk,iαi/σ
2
i . If the N risk-adjusted alphas are orthog-

onal to each of the K factor-exposure vectors, then each
element of A is zero.

11 For example, instead of employing the standard devia-
tion function, STD( ), we calculate the square root of the
average squared deviations from zero. Thus, the attribu-
tion system adds up in terms of the total realized active
return, but the fundamental law parameters are distorted
by not considering the off-diagonal elements of the residual
return covariance matrix.

12 The large negative correlations in Table 3 are for market-
model residual returns. The total return correlations (not
reported) for most country pairs is positive. For example,
the total return correlation between the United Kingdom
and Japan is 0.411.
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