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S U R V E Y O F T H E L I T E R A T U R E

POWER LAWS
Sanjiv Dasa and Jacob Siskb

We provide a brief survey of two areas in finance in which power laws may play an
important role—one, in better describing the tails of return distributions; and two, in
market microstructure modeling. While the existing literature in finance is not extensive,
we have surveyed a collection of papers in finance, as well as in other areas, attempting to
highlight cross-disciplinary connections.

1 Introduction

We examine power law distributions that arise in
two areas in finance. One, in distributions of prices
and returns, and two, in the microstructure of
information in markets. The role of power laws
in finance has been relatively less explored. In this
brief article, we summarize some of the literature
relating to finance from other fields, and conjecture
that power laws will play an important role in our
understanding of markets in the future.1

Frequency distributions of financial quantities
abound, but are rarely identified with power laws.
We have been trained to believe deeply in the sanc-
tity of the bell curve, that the normal distribution
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governs most of what we see, especially quanti-
ties in finance. For almost four decades, Benoit
Mandelbrot, in repeated publications, reminded us
that there was a good reason to examine power
laws in finance. This line of work began with
an early piece (Mandelbrot, 1963) to the most
recent, an entire book on the subject (Mandelbrot
and Hudson, 2004). Recent research seems more
accommodating of his vision, finding more often
that financial variables may indeed be distributed
according to power laws. Power laws encompass a
family of distributions, and include more specific
versions, such as Pareto’s law and Zipf ’s law.

The basic feature of a power law distribution is
that quantities of small size appear with very high
frequency, and large sizes appear with very low fre-
quency. For example, in economics (Pareto, 1896),
income distribution appears to be based on a power
law. Hence, the probability p of a variable x is pro-
portional to x−b, where b is the exponent of the
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distribution. Internet networks are characterized by
power laws. The degree distribution of the network
is now known to be based on a power law (the degree
distribution comprises the frequencies of the num-
ber of nodes each node on the network is connected
to). Power law distributions are characterized by
linear log-log plots, because the logarithm of the
probability is equal to

log (p) = a − b log (x)

where a is a scaling coefficient and b, as before,
is the power coefficient or tail index which quan-
tifies the rate at which the frequency scales with
the size of x. Many of the power law distributions
found in nature, physics, economics, sociology, and
the world at large seem to have power coefficients
between 1 and 3, i.e., b ∈ (1, 3). Fama’s (1965)
early work arrived at b approximately of 1.7. Fatter
tails than this are often found in related empirical
work. Note that the probability function p is written
quite generally here, and may be specified as either
the probability density function or as the cumula-
tive distribution function. In the latter case, it is
also mentioned interchangeably as Pareto’s law.

Power law distributions characterize what are
known as “scale-free” networks, i.e., when the
law describes the degree distribution of nodes in
the network graph. From the probability function
presented above, it is clear that there is no peak
frequency in the center of the distribution, in the
manner of a normal distribution, for example. The
peak frequency occurs at the minimum point of
the support of the distribution. There is thus no
“scale” parameter to speak of, no “normal” member
of the distribution. Hence, such distributions have
no scale, and are known as scale-free.

Power law distributions are related to Zipf ’s law
(1949). Zipf ’s law has very much the same flavor of
a power law, but for the fact that the variable x refers
to the rank of the observation. For example, the size
of a city s may be related to its rank r , as follows:

s = ar−b (see Gabaix, 1999, for a detailed analysis).
Another example: in English, the probability of the
rth most common word is 0.1/r for about the first
1000 words.

Pareto’s law is the instance of the power law that
refers to the CDF of the probability rather than the
PDF. Hence, the probability that a variable is larger
than x is proportional to x−b. This version of the
scaling law is useful when examining the tails of dis-
tributions, and as we will see, has been successfully
used in the modeling of outliers in financial data.
For another example, see Adamic and Huberman
(2000) who show that the distribution of visits to
web sites is governed by a Pareto power law. Pareto’s
law has also been shown to be consistent with a
realm of “winner takes all” in economics.

What is often ignored is that many more natural
phenomena seem to follow power law distributions
rather than regular distributions such as the normal.
Given that this scale-free property is ubiquitous in
nature, and because economic variables are related
to physical phenomena, it is hardly surprising that
many of the economic variables we examine also
tend to be distributed as per a power law. In the
next sections we shall examine two different settings
in which the statistical edifice of power laws plays a
role in finance.

2 Prices and returns

The work of Mandelbrot (1963) was followed by
that of Fama (1965), who found support for the
fact that equity return distributions have tails that
obey a power law.

An important characteristic of this finding is that
the tails are invariant to scaling and to time aggre-
gation. Such distributions are known as “stable” and
in the context of our notation, they would be called
b-stable, being labeled with the power coefficient.
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Hence, returns R would be such that

Pr[|R| ≥ x] = ax−b

where a > 0 and b > 0. Such a distribution is
also said to be “self-similar” in the tails. What this
means is that if we take any cut on the tail and
examine it, the tail will decay at rate b. If we then
take another slice of this tail, i.e., the tail of the
tail, it will look and scale exactly as its parent. And
so will the tail of the tail of the tail. This does not
happen with distributions such as the normal. See
Figure 1, where it is clear that the log-log plot for
both, normal and lognormal distributions declines
at an increasing rate, and is not linear, as would be
the case for a power law distribution. The tails of the
normal distribution decay much faster than power
law distributions. Hence, they do not depict stock
returns (at least the tails) very well. In reality, we
have many more large outliers than we would expect
to see from distributions that experience faster tail
decay than that of a power law.

So, if it appears that Mandelbrot has been right all
along, then why is his wisdom so far from being
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Figure 1 Log-log plot of the normal CDF. This is
based on a standard normal distribution. The figure
also shows the log-log plot for the lognormal distri-
bution. This is closer to being, yet is not, perfectly
linear.

generally acceptable? While this is in and of itself
an issue for discussion, there may be a good reason
for this lack of acceptance—new evidence shows
that he may not have been altogether correct on
this issue. A recent paper by Wu (2001) presents
evidence that the truth lies smack in between the
“normalists” and Mandelbrot. So, the tails decay a
wee bit faster than would be the case if they were
purely power law distributed. But they decay slower
than would be for exponential tailed distributions
(Malevergne et al., 2003).

Wu’s idea is to model stock prices as pure jump
Levy processes, but to make the jump arrival rates
follow a power law, dampened by an exponen-
tial function. It speeds up the rate of decay in
the tails, placing the process in between that of
pure normality and pure power law. This produces
exactly the desired empirical match. This model is
called the DPL, standing for “dampened power law”
model. The paper shows that there is a good fit to
the data comprising S&P 500 returns and option
prices. The model is also able to reconcile the well-
known feature of index returns, i.e., that under the
physical measure, as the interval between obser-
vations increases, the return distribution becomes
close to normal; but under the risk-neutral distri-
bution, as seen in option prices, no such reversion
to normality appears to be seen. Hence, b-stable
distributions are more apt for pricing derivative
securities, even though a mere examination of the
physical time series would not necessarily reveal
this.

The tension between the use of a normal distribu-
tion for stock returns (lognormal in stock prices)
versus a power law is an ongoing issue for modelers
in finance. Curiously, similar issues come up in the
field of theoretical computer science. Mitzenmacher
(2004) provides an excellent historical perspective
as well as an easy to read (for the almost lay person)
introduction to the technical issues. He details some
important features of power law distributions that
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we believe will be of interest to financial economists.
We summarize some of his findings here:

1. Moments may not be finite. Mitzenmacher
highlights the Pareto distribution of the follow-
ing form: Pr[|R| ≥ x] = [x/a]−b, with density
function p(x) = babx−b−1, where for positive
values of b ≤ 2, the variance is infinite, and for
b ≤ 1, the mean too is infinite. This presents
especially thorny problems in pricing securities
if the risk-neutral distribution is governed by a
power law. Some earlier work facing up to this
problem is presented in Heston (1997) and Carr
and Wu (2003). There seems to be little doubt
now that tails of the return distribution are fat-
ter than Gaussian and fatter than exponential
(Malevergne et al., 2003), who raise the concern
that even if mean and variance are finite, there is
little chance that the skewness and kurtosis will
be. Whether they are completely power law is
of course the open question, but the evidence
seemingly is against that.

2. The shape of the lognormal distribution is very
similar to that of power law distributions. As
with power laws, the log-log plot of the lognor-
mal distribution is also almost a straight line. See
Figure 1 for a visual comparison of the lognor-
mal distribution versus the normal on a log-log
plot. The lognormal one approaches linearity.

3. The similarity in shape of the lognormal and
power law distributions increases as the vari-
ance of the variable increases. See Figure 2 for
the log-log plot of the lognormal distribution as
we increase variance. Hence, high-return vari-
ance stocks appear to be closer to power law
distributed than low variance stocks.

While these are only few examples of the use of
power laws in looking at return distributions, spo-
radic bursts in research on this topic have been
experienced in the past two decades or so. An
excellent paper by Malevergne et al. (2003) lays out
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Figure 2 Log-log plot of the lognormal CDF tail.
The standard deviation (sigma) of ln (x) is varied
from 1 to 6, and the graph shows that the log-log
plot becomes almost linear as the standard deviation
increases. The steeply sloping line is for sigma=1
and the flattest line is for sigma=6.

much of the history of exploration of these pro-
cesses. This paper also explores whether stretched
exponential distributions and generalized Pareto
distributions fit a hundred years of stock returns
better than just power law distributions with b = 3.

Thus, the recent trend in the literature finally seems
to be moving in the direction of looking carefully
at these issues. The self-similarity property brings
in a link with fractals, an area that has been exten-
sively studied. Thus, there is much that financial
economists will find in terms of available tools.
However, the thorny issue of unbounded moments
also needs to be addressed. Even if the power coef-
ficient is chosen so as to provide a finite mean, thus
allowing pricing under the risk-neutral distribution,
the variance may not be bounded. For options deal-
ers, the notion of an implied volatility would vanish.
Hence, it is clear that adopting power law distribu-
tions may pose some difficult problems that reduce
its practical value. This may be why researchers and
practitioners have been reticent to move to this class
of processes. The future here is interestingly poised.

THIRD QUARTER 2005 JOURNAL OF INVESTMENT MANAGEMENTNot for Distribution



88 SANJIV DAS AND JACOB SISK

3 Information microstructure

Power laws also describe networks well, so that we
may use them to model the information structure of
markets and the sociology of investor relationships.

In a recent paper, Das and Sisk (2005) show how
the discussion on stock market message boards on
the internet may be used to infer the information
network across stocks. By examining the common-
ality of discussion on message boards (as measured
by the frequency of postings by one individual on
multiple boards within a time interval), they are able
to build up a network of information connections
between stocks. Once the network of connections is
established, it is then possible to subject it to anal-
ysis. In the context of power laws, they find that
these networks are close to being scale-free. Some
stocks have a high degree of connections and others
mostly have very few. If the information network
of stocks is scale-free, then it implies that infor-
mation will flow very fast on the network. Quite
intuitively, this classic hub and spoke network fos-
ters rapid interchange. Every node is connected
to each other one on the network with a very
short number of hops, which supports the rapid
flow of information. (The same intuition explains
the “six degrees of separation” result in social
networks.)

The idea of studying the information network
might facilitate understanding the mechanism by
which information enters prices, and may also be
useful in explaining market herding, panics, and
crashes. Because of the rapid movement of opin-
ion the tails of the stock return distribution may be
induced to be fatter. Thus, the power law (scale-free)
structure of the information network may result in
the presence of a power law structure in the tails of
equity returns. One power law begets another!

An example is the model of Eguiluz and
Zimmermann (2000), where investors who share

information are pooled into clusters which evolve
over time. All investors within a cluster share
information and make the same (herding) trades.
Trading activity disperses information across the
network at a fixed rate. If this rate is below a thresh-
old, the induced distribution of returns exhibits a
power-law distribution with an exponential cutoff.
Above this threshold, large returns become more
likely, as do large crashes. D’Hulst and Rogers
(2000) find that the cluster sizes are power law
distributed with exponent b = 5/2. Xie et al.
(2002) find that when the number of agents in
this model is large but the probability of mak-
ing a transaction is low, then there exists a high
probability of the system coalescing into a single
cluster.

There is other evidence of scale-free networks in the
information flow through the market. Garlaschelli
et al. (2005) model share-holding networks, a graph
in which the nodes are firms, and the directed,
weighted edges represent holdings in the securities
of other firms. For a given firm, (a) the in-degree
and (b) the sum of incoming link weights both
display power law tails in an empirical study over
several markets; further, (a) is a power law func-
tion of (b). They also find that the exponents of
these power laws are related by a simple scaling
function. It seems reasonable that people obtain
new information when they have a vested interest
in that information. Consequently, power laws of
mutual holdings could be a major underpinning of
information propagation.

Scale-free distributions may be used to model
default contagion. A network model of credit corre-
lations related to this idea is developed by Giesecke
and Weber (2003). They show how the model may
be used both for calibration and analysis of joint loss
distributions. Such a model will also support ana-
lyzing losses economy-wide in the limit. Many of
the results now widely developed in the physics and
computer science literature on the limiting form of
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such networks will become useful in understanding
market interaction and aggregation of information
in finance.

Of course, the presence of a power law information
network does not have purely negative implications.
The reverse intuition works just as well in the con-
text of market efficiency. Scale-free networks offer
fast information aggregation even when informa-
tion brokers and intermediaries have access to only
limited portions of the information set (Moss et al.,
2000).

An important question arises at this point—what is
the mechanism that leads to information structures
in finance becoming scale-free or power law dis-
tributed? (Note that we are being rather loose here
with the network description—what is meant is that
the degree distribution of the information network
will be power law distributed.) Further research is
required to determine if the information network
of stocks, as it grows, is becoming more power law
oriented or less. To date this is not known, but may
be explored by looking at the growth of the mes-
sage board network from its inception, data which
is indeed available today. It may also be the case that
at different time scales the information structure is
quite different. It is quite likely that, as markets
grow and become increasingly globalized, they coa-
lesce into power law mode, increasing the risk of
a market meltdown, while concurrently becoming
more efficient.

The growth of networks into their scale-free forms
has been codified into the theory of preferential
attachment of Barabasi and Albert (1999). The idea
of preferential attachment is that when a new node
enters the network, it tends to attach to other
nodes with a probability that is proportional to the
number of connections of each other node. This
eventually results in the limit structure of a scale-free
network. Whether the information network in mar-
kets grows in a manner consistent with preferential

attachment is not known, but is certainly worth an
empirical exploration.

Traces of the information transmission have never
been more transparent or accessible. Internet news-
groups, mailing lists, email corpora such as Cohen
(2004), closed-captioning for news media outlets
are just some examples of the wealth of information
available to use at a variety of different time scales.
It should be possible to observe the propagation
of exogenous news (or endogenous herd behavior)
across investor groups an individual at a time.

Gabaix (1999) explores the mechanism of growth
in detail for city sizes, and provides a useful discus-
sion of how certain forms of multiplicative growth
eventually result in power laws in the domain of
economics; see Yule (1924) for what is the first
attempt at this line of thinking, and Simon (1957)
for the characterization of this phenomenon as the
“Gibrat” principle. Mitzenmacher (2004) presents
a simple analysis also showing that many different
multiplicative growth models may result in variables
that are approximately lognormal. Hence, this lends
subtlety to the contentious debate about power law
and lognormal distributions for financial variables.
Both appear to be the same, yet are indeed so
different.

Gabaix et al. (2003) provide a microstructure
model that explains why many of the fluctuations
we see in financial variables are power law dis-
tributed. The basis of their theory lies in the size
distribution of participants in the market. When
these agents (investment funds) of different sizes
optimize, it result in power law distributions in
returns, trading volume, and number of trades.
Thus, as summarized by Mitzenmacher (2004),
there are two routes to power laws: (i) preferential
attachment and (ii) optimization.

Lüders et al. (2004) explore empirically the out-
come of optimization behavior, which is posited to
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result in a power law relationship between prices (P)
and dividends (D), i.e., P = aDb. They also show
that this is consistent with an economy of agents
who have declining relative risk aversion. They look
at six major international stock markets and find
that the evidence supports the theoretically derived
power law relationship.

4 Summary

Power law distributions are intricately connected to
natural phenomena; in like manner, so are regular
distributions such as the normal. As we have seen,
the two distributions do indeed resemble each other
in many ways, but are also very different, as may be
evidenced in an examination of their moments.

A critical issue in the adoption of power laws is
whether the moments of relevance (mean, variance
at least) are bounded. Of course, even if the under-
lying stock (or other financial variable) has infinite
mean and/or variance, but the required derivative
security (a function of the underlying) has finite
mean, we may still price securities as before. This
logic was exploited in Carr and Wu (2003), though
calibration may still be an issue. Hence, there seem
to be some, but not too many critical impedi-
ments to the adoption of power laws in practical
applications in finance.

Note

1 This is by no means a comprehensive survey of power laws,
nor does it aim to cover all the literature in finance. We apol-
ogize in advance for leaving out many references that were
not directly related to the goals of this article. Our only pur-
pose here is to highlight two interesting areas where power
laws may have an important role to play in the develop-
ment of our thinking in finance, and to analyze the linkages
between these two areas. Linkages to other fields are also
mentioned because there seems to be a growing connection
in the recent literature.
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