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S U R V E Y O F T H E L I T E R A T U R E

GENETIC ALGORITHMS
Sanjiv Ranjan Dasa

1 Introduction

The use of genetic algorithms (GAs) in finance has
focused primarily on the area of investments, in
particular in the uncovering of trading rules (see
Allen and Karjalainen, 1999). Genetic algorithms
have also been used in the estimation of economet-
ric models. A standard text that provides an easily
accessible introduction to the subject is Goldberg
(1989). A nice survey on the application of GAs to
investment strategies is the book by Bauer (1994).

2 Overview of GAs

GAs deliver the optimal strategy, best trading rule,
fittest parameters, etc., by means of mimicking
Darwinian selection. This selection is made over
hundreds of possible candidate strategies, and their
offspring. The best trading rules are discovered by
an evolutionary process implemented on a com-
puter. There are two sets of rules that operate
in a GA system. One, a rule that determines
which candidate strategy is the best, and when
the process of evolution may be halted. Two, the
set of rules that generates more candidates for
evaluation.

aSanta Clara University, USA.

For example, in the evaluation of trading rules, the
best candidate trading strategy may be, for example,
the one that yields the highest risk-adjusted profits
on back-testing. The stopping rule for the GA may
state that no more iterations will be performed if
the most profitable (fittest) rule from one iteration
does not exceed that of the prior iteration by at least
an amount ε.

Each trading rule is represented by a string of num-
bers. While there is nothing in the theory of GAs
that specifies precisely the representation of a trad-
ing rule, it is not unusual to specify it as a string of
length n, comprising zeros and ones. For example,
a simple market timing trading rule may be repre-
sented as a string of eight numbers, the first four
relating to the equity market and the last four to
the debt markets. This eight-digit string (chromo-
some) comprises the “DNA” of the trading rule. By
generating random strings of this length, we may
create as many as 28 = 256 different trading rules.
The diagram below depicts one such rule:

Equity market Debt market
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The market timing rule may be stipulated as follows:
If the last 15 days’ equity return exceeds the value
of the number represented by the binary digits in
the first four places of the rule, and the last 15 days’
bond market return is less than the number in the
last four digits, then it implies that a shift from
bonds into equities is called for. Also, if the equity
return lies below the number in the first four dig-
its, and the bond return lies above that of the last
four digits, then a shift from equity into debt is rec-
ommended. (In the diagram above, based on the
binary digits, the cutoff values are 14% for equity
and 4% for debt.)

Because we may generate several random binary
strings, it is very easy to quickly create an initial
set of trading rules. All these rules form candidates
for the best strategy, and then may be back-tested
to determine which is best. This mimics Darwinian
selection by survival of the fittest.

In our example, we have just 256 possible mar-
ket timing rules, and hence exhaustive checking
of all possible strategies is feasible. More compli-
cated trading rules may be represented by far more
than 8 bits. An n-bit rule would generate 2n pos-
sible strategies, and for large n, it is infeasible to
back-test all of them. Hence, only a limited set
of rules is initialized by random generation, and
the fittest of these are allowed to bear “offspring,”
which results in new and better rules. The beauty
of GAs is that the technique very rapidly finds very
good (or even the optimal) rules within a short
run time.

The first random set of rules is called the initial
“generation” of the population. The size of this gen-
eration is denoted m � 2n. Every member of this
population is back-tested for profitability, and its
score (fitness criterion) is recorded. Each generation
evolves into the next by means of three Darwinian
operations (the procedure outlined below admits
many variations, but usually respects the three
operations in broad form):

1. Death and birth: A fraction δ of the population
will die in the cycle from one iteration to the
next. The lowest scoring δm of the rules are elim-
inated from the population. Next, the top βm of
the population is duplicated. This birth process
returns the size of the population to m if β = δ.
At the end of this stage, so far, no improved
rules have been created. However, the average fit-
ness of the population has been enhanced by the
death of weaker rules and the birth of stronger
ones.

2. Crossover: At this stage, the entire population
engages in mating, resulting in m/2 pairings.
Each pair exchanges a random substring, result-
ing in a crossover of DNA from one trading rule
to another. For example, the bits 3–5 may be
exchanged by one pair of rules. This leads to
entirely new rules (children). There are many
variations possible here. The substrings of bits
exchanged may not be from the same starting
bit, though they need to be of the same length. In
another variation, commonly adopted, the same
substring location is used for all crossovers in
the population. In our market timing example,
either the equity substring or the debt substring
may be exchanged. Since the initial death and
birth process has resulted in a stronger rule set,
the exchange of good genetic material across
pairs of rules may result in even better off-
spring (the theoretical literature shows that this
works most of the time, barring some needle-in-
haystack cases, see Goldberg, 1989, chapter 2.)

3. Mutation: The exchange of genetic material is
a systematic way in which succeeding popula-
tions become fitter. Sometimes, idiosyncratic
improvements also occur, through mutation. In
order to impose this in a GA, we pick a small
fraction of the population, say 1%, and flip a
single random bit in the n-bit string for each of
these chosen chromosomes.

At the end of these three operations, the procedure
may then be repeated; each time the fitness of the
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rules is computed, and the three operations per-
formed. After some iterations, the best rule will
only make a very marginal improvement and we
may halt the procedure. The top few of the trad-
ing rules will be the fittest. Of course, GAs are
not guaranteed to work, and there are some prob-
lems that have been shown to be “GA-hard,” i.e.,
which require exponential time to solve. These are
usually problems with extreme optima, and tend
to be hard to solve for many other algorithms
as well.

3 Genetic Programming

A particular variant of genetic algorithms is genetic
programming (GP). A GP develops rules (for
example, trading strategies) using expression trees.
Hence, the basic unit of structure is not the chro-
mosome but a free-form expression. We can explain
this representation using the market timing exam-
ple we previously employed. Let x denote the past
15 days’ average return in the equity market, and
y the same for the bond market. We denote the
cutoff level of the equity return as a and that of the
bond return as b. As before, we specify that if x > a
and y < b, then we shift investment into the equity
market. And if x < a and y > b, then we shift into
the bond market. If neither is true we do nothing.
Denoting the output variable as z, we specify that
“do nothing” is denoted by z = 0, invest in equities
is denoted z = 1, and investing in bonds is z = 2.
The mathematical expression that depicts this logic
is as follows:

z = max [0, 1 × ((x > a) AND (y < b)),

2 × ((x < a) AND (y > b))]

where the expressions in ( · ) are boolean and output
either a 0 or 1 value. This mathematical statement
may also be represented in an expression tree, which
appears as follows:

1 2

* *

AND AND

Max(0,•)

> < < >

x a y b x a y b

GP is characterized by the expression tree. The pop-
ulation of candidate trading rules comprises a set
of expression trees, and these trees may be ran-
domly generated. We note the following aspects
of GP:

1. There are two types of structural entities in GPs:
variables and operators. In the expression tree
above we had the following variables: inputs
{x, y} and constants {a, b, 0, 1, 2}. The operators
came from the following set: {max , AND, ∗,
<, >}.

2. GP has more flexibility than the GA described in
Section 2. One may easily see that the generation
of flexible length random expression trees might
result in more forms of rules than fixed length
chromosomes.

3. The crossover operation in the case of GPs is
undertaken by two parent expression trees swap-
ping subtrees. The nodes from which the swap is
undertaken need not correspond to the two par-
ents, simply because random trees do not have
the same structure, unless this is strictly imposed
while generating expression trees. The children
expression trees will also not have the same struc-
ture as their parents. Hence, the offspring tend
to be of much richer and varied form in the case
of GPs than in the case of GAs.
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4. In the case of GAs, two identical parents will
result in an identical child after the crossover
operation. This is not necessarily the case with
GPs because the nodes at which crossover occurs
in both parents might be different. Hence, the
subtrees that are swapped may be different.

5. The mutation operation may be undertaken
by randomly replacing one tree operator with
another, or a tree variable with another.

Each rule in the population of candidate rules is
parsed through a fitness function to determine the
ranking of rules. After iterating, the best rule is
determined. The expression tree may be written
in algebraic form and then applied to the purpose
intended.

Overall, both GAs and GPs have been found to be
extremely good at searching very large spaces for
optimal or near-optimal solutions with run times
that are comparable to other algorithms. The appli-
cability of GA/GP to a wide range of problems
explains its appeal to modelers. There are not many
methods that provide rules and expressions that
are hard to anticipate. Examination of the solution
expression trees themselves often reveals intuitions
that were not apparent prior to the analysis.

GAs are natural approaches to studying social inter-
action, especially that in the markets. Riechmann
(1999) shows how efficient GAs can be in depict-
ing evolutionary processes. The three operations in
each iteration of the GA result in both, “variety
generation” and “variety restriction,” which makes
it very useful for searching large spaces, as the
algorithm, while narrowing in on an optimal solu-
tion, is simultaneously thinking outside the box
as well.

In finance, the main applications have been in
the areas of trading rule generation, estimation of
econometric systems, and classification of firms.

4 Applications

4.1 Trading

Allen and Karjalainen (1999) applied a GP algo-
rithm to the S&P index to determine when to be
in the index and when to stay out of it. The rules
they uncovered stipulated that investment in the
index was called for when equity market returns
are positive and market volatility is low. When the
opposite is true, the rule stipulates that one stay
out of the market. This rule outperforms a buy and
hold strategy, but not significantly after accounting
for transaction costs. However, this outcome does
imply that the GP was able to develop rules with
some predictability.

Neely (1999) revisited the work of Allen and
Karjalainen by looking at the results on a risk-
adjusted basis, and found that the GP did not find
rules that surpassed buy and hold strategies after risk
adjustment. The results in his paper are supportive
of market efficiency. He proposed that all analy-
ses of GAs should be undertaken on a risk-adjusted
basis.

In contrast, Rodriguez et al. (2001) found that, even
after risk adjustment, GAs outperformed buy and
hold strategies in the Madrid stock market.

One would expect GAs to perform especially well in
the domain of dynamic trading rules (versus static
ones) since the rule space is extensive. Glaffig (2004)
investigates the use of GAs in hedge fund investing.
He uses a mixed GA cum neural net algorithm to
develop dynamic trading rules, uncover the factors
that determine the performance of these strategies,
and also to propose risk management measures for
hedge funds. The approach is coined FSM, for
“fuzzy strategy mapping,” which takes past hedge
fund and market data to develop dynamic trad-
ing rules. The FSM was trained to track the CSFB
Tremont hedge fund index, and also a long/short
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fund. Out of sample prediction of next month’s
returns ranged from 65 to 85%, indicating good
performance for the GA.

In an interesting paper, Linn and Tay (2001) posit
that investors faced with an overwhelming quantum
of information use heuristics that may be mim-
icked by GAs. They develop such rules using a
fuzzy genetic classifier (based on a GA), and then
examine how such rules, if employed by investors,
might impact the process of price formation. By
generating returns from artificial markets driven by
GA-based trading rules, nonlinear price effects are
found that are similar to that of the data from real
markets. The authors thus offer a behavioral tech-
nology that may explain some of the observed price
formation in markets.

4.2 Econometrics

As is apparent from the GA approach, estimation
undertaken using these methods falls in the semi-
parametric to non-parametric category. Czarnitzki
and Doherr (2002) present a GA that is used to esti-
mate a censored regression model. This is compared
to a standard technique for estimating censored
regressions, and is found to return the same esti-
mates. However, it is shown that the GA is more
stable. This application illustrates that GAs are good
devices when the criterion function to be optimized
is nondifferentiable in some regions. In a similar
vein, Kanungo (2004) presents a GA application in
the realm of logit models.

Even GAs are not always successful in converging
to the global optimal, especially when many local
optima exist. Pictet et al. (1995) analyze when stan-
dard GAs fail and propose a sharing approach across
populations. If there are several local optima, they
show that an approach that addresses this prob-
lem is to maintain several separate populations, not
just one. In this way, diverse populations will focus

on separate local optima. Only at the end of the
procedure might we compare across populations.

5 Summary

In addition to the more common applications
described above, a nascent area of application is that
of game theory. This is a natural development. Since
GAs may be used to mimic the behavior of differ-
entially learning agents (i.e., humans), they may
also be used to examine equilibria amongst these
interacting agents.

Noe and Pi (1998) provide an instance of one such
application in a takeover situation. They investigate
the problems of free-riding and coordination fail-
ure. Simulations from a GA correspond to the the-
oretical predictions from the Nash hypothesis. The
deviations from the Nash outcome are explained by
the mimicking by the GA of experimental biases
with human subjects.

As the field of behavioral finance grows, we may
see more use of GAs as the medium of investi-
gation of equilibria with interacting biases across
heterogeneous agents. GAs may also be used to
examine the price formation process in more detail
in microstructure models. We appear to be at a
cusp point—the next few years will determine if
this technology will encounter widespread use, or
be relegated to the graveyard of fads in social science.
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