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S U R V E Y O F T H E R E C E N T L I T E R A T U R E

RECOVERY RISK
Sanjiv R. Das a

I survey a selection of recent working papers on recovery rates, providing a framework for
extant research. Simpler versions of models are also presented with a view to aid accessi-
bility and pedagogical presentation. Despite the obvious empirical difficulties encountered
with recovery rate data, modeling advances are making possible better quantification and
measurement of recovery, and will result in innovative contracts to span this risk.

1 Introduction

Default risk has two main components, the risk of
default occurrence, and the risk of recovery. The
extant literature has focused widely on the former,
and much too little attention has been given to
recovery risk. This is changing, and many working
papers on recovery risk have been written recently.
In this article, we review what we know about recov-
eries, and highlight some of the new thinking in this
area.

In discrete time, we may write the one-period spread
as determined by the probability of default, which
we denote as λ, and the loss rate given default
(LGD) L = 1 − φ, where φ is the recovery rate.
We restrict ourselves to an exposition in discrete
time. Hence, we consider intervals ending at times
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{t1, t2, . . . , tN }, where there are N periods, and
corresponding time points.

More generally, we may think of the credit spread
for a given maturity as being a function of a vec-
tor of forward probabilities of default, and recovery
rates, as well as some firm-specific constants. We
may write the spread (S) as

St = f (λ, φ) (1)

where λ = {λt1 , λt2 , . . . , λtn}. Likewise, we have
recovery rates φ = {φt1 , φt2 , . . . , φtN }.

It is natural to expect that the relationship between
spreads and default probabilities is a positive one,
and that between spreads and recovery rates is
negative. Hence,

∂S
∂λ

> 0,
∂S
∂φ

< 0 (2)
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This also suggests, but does not necessitate, a nega-
tive relationship between default rates and recovery
rates, i.e. Corr[λ, φ] < 0. In some cases, this
negative relationship is derived endogenously in the
model, as in variants of the Merton (1974) model.
In other cases, it is imposed exogenously, as in the
paper by Bakshi et al. (2001).

Before proceeding to models and empirical reality,
it is worth summarizing the statistics available on
recovery rates. These are all available in the work
of Altman and Fanjul (2004), and other sources,
many provided by Altman. The broad statistics on
recovery seem to remain unchanged (mostly) year
after year with uncanny stability. Consider Table 1
drawn from Altman and Fanjul—as can be seen,
the overall median recovery rate is 40% and this has
been very much the value for many years. Senior-
ity determines most of the cross-sectional variation
in recoveries. Recovery rates are highly variable
within each category, for the standard deviations
are relatively large in comparison to the means. This
suggests that accurate estimates of recovery may be
difficult to find.

Table 1 Summarized recovery rates for publicly
traded corporate bonds. These are drawn from the
results presented in Altman and Fanjul (2004).
Recovery rates are computed based on prices
within 30 days of default, and are percentages of
the value of the bond prior to default. The sample
covers the period 1974–2003.

Median Mean
Seniority % % Std. Dev.

Senior secured 54 53 23
Senior unsecured 42 35 27
Senior 32 30 25

subordinated
Subordinated 32 29 23
Discount bonds 18 21 18

All 40 34 25

2 Empirical attributes

Apart from the raw statistics delineated above, there
are many empirical findings that have recently been
uncovered in the growing literature in this area.
These are as follows:

(1) There is a strong negative relationship between
default rates and recovery rates on default. (Note
that these are realized default rates, and are
different from probabilities of default (PDs),
which are forward-looking metrics.) Altman,
Brady, Resti and Sironi (2005) (ABRS) find
that this negative relationship is strong for var-
ious linear and nonlinear specifications. The
R-squares are in the range of 65% and some-
times as high as 80%. The relationship is
definitely nonlinear, as linear specifications
result in much lower R2s of about 50%. In the
ABRS paper, recovery rates appear to be nega-
tively convex in the default rate, i.e. as default
rates increase, recovery rates fall, but tend to fall
less with increasing default. There is a tendency
towards an asymptotic lower bound for recov-
ery rates; it suggests that the distributions of
recovery rates are likely to be positively skewed.
The negative correlation of default and recov-
ery is natural in models where both are driven
by a common systematic factor.
Estimates of the correlation vary widely. Hu
and Perraudin (2002) find a negative corre-
lation (≈−0.2) in their sample of US firms,
whereas Carey and Gordy (2003) find only
a very low and weak negative relationship
in a 30-year sample of US defaults. Bakshi,
Madan and Zhang (2001) report, in their study
of lesser quality investment-grade debt, that
a 4% increase in the probability of default
results in a 1% decrease in recovery rates.
Frye (2000) reports that in times of eco-
nomic distress, recovery rates can drop by as
much as 25%.
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(2) Recovery rates are very volatile. We can see this
from the standard deviation of recovery rates in
Table 1. A look at recovery rates over time, as
presented in ABRS, shows that aggregate recov-
ery rates went to a high of 62% in 1987, and
reached a low of about 23% in 1990.
This volatility, coupled with the negative cor-
relation of default and recovery, implies that
risk management measures such as credit Value-
at-Risk (cVaR) that ignore these aspects of
recovery empirics, must surely understate their
risks. Simulation exercises in ABRS attempt to
quantify the extent of this impact.

(3) The supply of defaultable debt is also an important
determinant of recovery rates. This thesis is devel-
oped and tested in the work of ABRS.They find
that the total amount of high yield bonds out-
standing is inversely related to recovery rates in
a statistically significant manner.

(4) Seniority matters. From Table 1 we can see that
this is clearly the case. Acharya, Bharath and
Srinivasan (2003) find this effect in a study of
defaulted bonds over the last two decades, after
controlling for many other causes.

(5) Recovery rates depend on industry sector. This
finding in Acharya et al. (2003) is found to be
robust to many controls. Acharya et al. imply
that industry effects may be driving the influ-
ence of defaultable bond supply on recovery
rates. An important implication of this work
is that models of recovery rates should incor-
porate industry factors, and from the point
of view of diversification, it makes sense to
choose bonds across sectors, than within sec-
tors. Sector recovery risk may also be hedged
using sector-specific basket default contracts.

(6) Regime effects impact recovery rates. As dis-
cussed, Frye (2000) shows that recoveries in
economic downturns are substantially (≈25%)
lower than what we see in normal times. In a
recent paper, Hu (2004) provides an analysis
of recovery rate distributions by seniority, rat-
ing class and regime, and finds very different

outcomes by regime. She fits regime-dependent
beta distributions for recovery and finds starkly
different shapes of the distributions. The
implications for Monte Carlo simulation of
recoveries is that regime-shifting is important to
include in the model, especially for long-dated
portfolios.

(7) The Beta distribution is proving to be the fitting
model of choice. The probability density func-
tion for recovery rates is usually modeled as
follows:

f (φ; a, b) = φa−1(1 − φ)b−1

β(a, b)
(3)

where a, b are the parameters of the distribu-
tion, and β(a, b) is the beta function. The
beta function is β(a, b) = �(a)�(b)

�(a+b) . Hu (2004)
shows that recovery rates over the last two
decades fit this distribution well, and that there
are two primary determinants of the fit. One,
the economic regime in which the recovery
rate resides, and two, the seniority of defaulted
debt. She fits recovery rate data by setting the
parameters of the beta distribution as functions
of economic regime and seniority. The differ-
ences across regime are striking, which implies
that Monte Carlo simulation of recovery rates
should also be based on regimes in order to
capture scenarios in a comprehensive manner.

Overall, there is a clear relationship of recovery
rates to defaults, industry factors, seniority, and
economic regimes. All this evidence is also consis-
tent with a high element of systematic risk driving
default and recovery.

3 Recovery conventions

Recovery rates are usually expressed in percentage
terms, though under different metrics. Comput-
ing recovery depends on both the specification of
the dollar amount recovered (the numerator) and

FIRST QUARTER 2005 JOURNAL OF INVESTMENT MANAGEMENTNot for Distribution



116 SANJIV R. DAS

the base against which comparison is made (the
denominator).

While there are many ways in which the recovered
amount might be assessed, two approaches seem to
be common.

(1) Recovery is measured as the value of bonds
within the month after default. An observed
price is sufficient to determine the value for
this purpose.

(2) Recovery is measured at the time of the final
resale of the bonds, or the value in the final
restructuring under a court agreement. This
usually occurs long after the default date itself.

Which of these conventions is used often depends
on the purpose for which recovery rates are required.
In derivative pricing models, such as those required
for valuing default swaps, the former measure is the
more appropriate one. However, in empirical anal-
yses, in which the end-game value of a Chapter 7 or
11 outcome is being assessed, quite clearly, we are
interested in the latter specification.

The second part of the recovery rate specification
lies in expressing the recovered amount as a percent-
age of a baseline value. We encounter three popular
conventions here:

(1) Recovery of Par (RP): here the recovered
amount is expressed as a fraction of the par value
of the security.

(2) Recovery of Treasury (RT): recovery is a frac-
tion of the value of a similar risk-free bond.

(3) Recovery of market value (RMV), where the
recovery amount is taken as a fraction of the
price of the security if it had not defaulted. This
is sometimes similar to expressing recovery as a
percentage of the price of the bond just prior to
default, provided default comes as a complete
surprise.

In a recent model, Bakshi et al. (2001) fit mod-
els to BBB bond data and assessed which of these
conventions resulted in a better empirical fit. They
found that the best approach was the Recovery
of Treasury (RT) assumption. They also discussed
how to take their fitted model and move between
the physical and risk-neutral measures for recovery
rates. We will consider this later.

4 Recovery in structural models

The line of structural models beginning with
Merton (1974) are based on modeling the underly-
ing firm value, and then determining the values of
risk-neutral default and recovery as functions of firm
value. Thus, both default and recovery are endoge-
nous in this class of models. We undertake a simple
exposition here.

Let the initial value of the firm be V0. At the matu-
rity (T ) of the debt in the firm, the value of the
firm VT must be below the face value of debt D for
the firm to be in default. It is easy to see that this
directly provides the recovery rate, i.e.

Recovery rate = φ = VT

D
< 1, if default occurs

(4)
The expected recovery is simply

E [φ] = E
[

VT

D

∣∣∣∣VT < D
]

(5)

= 1

D
E [VT |VT < D] (6)

Note that

E (VT ) = E [VT |VT ≥ D] + E [VT |VT < D]
The previous two equations may be used to write
the equation for recovery as follows:

E [φ] = 1

D
{E [VT ] − E [VT |VT ≥ D]} (7)
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= erT 1

D


V0 − e−rT E [VT |VT ≥ D]︸ ︷︷ ︸

Asset or nothing call


 (8)

= 1

D
erT {V0 − V0N (d1)} (9)

= V0

D
erT {1 − N (d1)} (10)

d1 = ln (V0/D) + (
r + 1

2σ2
V

)
T

σ
√

T
(11)

This is a very simple expression for recovery rates
in the Merton model. It is easily checked that this
implies an endogenous negative correlation between
default and recovery. This analytic equation may
also be easily extended to models where a default
barrier is used.

There are structural models in which the recov-
ery rate is exogenously imposed and is not derived
within the model. This is the approach taken in the
model developed by CreditMetrics (Gupton, Finger
and Bhatia, 1997). In fairness, this idea was origi-
nally employed in a model by Nielsen et al. (1993).
This model posits the form originally used in Black
and Cox (1976), where default occurs not just at
maturity, as in the Merton model, but also at times
prior to maturity, if the value of the firm accesses
a default boundary. The innovation adopted in the
CreditMetrics model is to make the default bar-
rier stochastic, which plays the important role of
making spreads larger and more volatile.

5 Recovery in reduced-form models

In reduced-form models, the recovery rate is not
endogenously available as in structural models. It
needs to be exogenously supplied. Hence, it is an
additional input to the modeling process. As noted
in the beginning of this review, spreads are a func-
tion of the probability of default, and the loss rate
(1 − φ). Hence, it is not possible to disentangle
recovery rates from spreads without making an

assumption about the probability of default, or vice
versa. This has been pointed out in many articles
(see, e.g.: Duffie and Singleton, 1999) and various
suggestions have been made to work around this
problem.

A recent paper by Chan-Lau (2003) develops a
way of extracting recovery rates from the default
swap markets. These markets are fast becom-
ing the calibration anvil for reduced-form mod-
els. The innovation in this approach lies in
exploiting the relationship of default probabilities
and recovery rates to spreads in a manner that
achieves bounds on recovery rates, rather than
point estimates. We briefly review this approach
here.

Consider a discrete-time model with N periods,
indexed by i = 1, 2, . . . , N . Hence, we have
times 0, t1, . . . , ti , . . . , tN . For simplicity, we let
the intervals h for each period be constant, i.e.
h = tN /N .

The forward rate between ti−1 and ti is denoted as
f (ti), which is the one-period forward rate ending
at time ti . Within each period, default probabilities
are assumed to remain constant, and are denoted
as λi ≡ λ(ti). Default probabilities are stated in
annualized form. Therefore, the survival probability
from time 0 to time ti is

s(ti) = exp


−

i∑
j=1

λ(tj)h


 (12)

Suppose the N -period default swap premium is
cN % per year. Then, the premium paid per period
on a notional of $100 is equal to cN × h. We
may express the expected discounted value of the
premium payment in period i as follows:

pi = cN h s(ti) exp


−

i∑
j=1

f (tj)h


 (13)
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The total expected premium on the entire default
swap is

P =
N∑

k=1

Pk (14)

Assume that the recovery rate is constant and is,
as before, denoted by φ. Then, the expected dis-
counted payoff from the default payment on the
swap in period i is

Di = [1−e−λih] s(ti−1) exp


−

i∑
j=1

f (tj)h


 (15)

The total expected discounted payoffs on default
are

D =
N∑

k=1

Dk (16)

In a fair value default swap we must have the premi-
ums equalling the payoffs in discounted expectation
(under the martingale measure).

P = D (17)

Given a set of swap premia, we may bootstrap the
values of s(ti) for all maturities. We begin with
N = t1, and assuming a fixed φ, we solve for s(t1),
given a known premium c1. Next, we use premium
c2, and the previously computed s(t1) to obtain s(t2).
And so on, up the maturity curve, until we have all
the survival probabilities.

Chan-Lau (2003) suggests that we may think of
the survival probabilities as functions of the cho-
sen recovery rate φ. Setting the recovery rate too
high would imply negative survival probabilities in
order to be consistent with spreads. Hence, there
must be a “maximal” recovery rate which admits
a set of acceptable survival probabilities across all
maturities.

This maximal recovery rate, labeled φ̄, is extracted
in Chan-Lau’s working paper for various emerging

market debts, cross-sectionally, on a daily basis. The
time series of maximal recovery rates is then com-
pared across countries to determine the features of
cross-border correlations. Interestingly, he also finds
that φ̄ drops sharply in advance of Argentina’s recent
default crisis.

6 Measure transformations

In both the preceding sections, recovery rates were
extracted from models, via calibration to the prices
of traded securities. Therefore, the recovery rates are
obtained under the pricing (risk-neutral) probabil-
ity measure. For the purpose of risk management,
these need to be converted into recovery rates under
the statistical (physical) measure. This matter is ably
addressed in the paper by Bakshi et al. (2001). We
present their model (in simplified form) here.

In the world under the physical measure, we define
the probability of default to be λ̄, a constant. The
recovery rate is random and will be high or low as
follows:

φ =
{
φH with probability p̄
φL with probability 1 − p̄

(18)

Naturally, conversion to and from the risk-neutral
and physical measures requires the risk premium
for recovery risk. This premium depends on the
specific utility function chosen. We work here with-
out necessarily specifying the form of the utility
function.

Assume a representative investor with initial wealth
W0, which includes a defaultable security that
promises to pay F at maturity. Utility is designated
to be a function of terminal wealth (W ) in this, a
one-period model, i.e. U (W ).

The investor can buy a default protection contract
on the defaultable security now at cost C0. In the
event of default, the investor’s payoff from the pro-
tection contract will be CH or CL, with CH > CL,
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dependent on the recovery rate realized with the
probabilities above. Interest rates are zero in the
model. We set the number of units of the hedge
contract to be x.

The outcomes of the model are threefold: (a) no
default occurs, (b) default occurs and recovery
is φH, or (c) default occurs and recovery is φL.
The three respective terminal wealth values are as
follows:

W =




W0 − xC0 w/prob (1 − λ̄)

W0 + x[CH − C0] − (1 − φH)F w/prob λ̄p̄

W0 + x[CL − C0] − (1 − φL)F w/prob λ̄(1 − p̄)

(19)

We may write the expected utility of these
outcomes as

Ē [U (W )]
= (1 − λ̄)U [W0 − xC0] (20)

+ λ̄p̄U [W0 + x(CH − C0) − (1 − φH)F ] (21)
+ λ̄(1 − p̄)U [W0 + x(CL − C0) − (1 − φL)F ] (22)

It is easy now to solve for x, by differentiating the
expected utility with respect to x and setting the
result equal to zero:

Take
dĒ [U (W )]

dx
= 0, Solve for x (23)

Substituting x in Ē [U (W )], gives Ē∗[U (W )], i.e.
the optimal utility function.

This preceding analysis was carried out under the
physical measure. Were the same optimization done
with a risk-neutral investor, the expected utility
would be

E [U (W )] = E (W ) (24)

= (1 − λ)W0 (25)

+ λ p[W0 − (1 − φH)F ] (26)

+ λ(1 − p)[W0 − (1 − φL)F ]
(27)

where E ( · ), λ, p are written differently compared
to Ē ( · ), λ̄, p̄ as before, to signify that the analysis is
under the risk-neutral measure. Also, note that there
is no purchase of a default protection contract, as
the investor is neutral to credit risk.

Equating, Ē [U (W )] = E (W ), we get a single
equation mapping {λ̄, p̄} to {λ, p}. In the special
case that φH = φL = 1, there is no recovery risk.
In this case we may solve for λ in terms of λ̄. Once
we have this, then we may use the equation above
to solve for p. The risk premium for recovery would
be related to the Radon–Nikodym derivative ( p̄/p).

Bakshi et al. (2001) calibrate a full-blown version
of this model to BBB bonds, and in out-of-sample
forecasts, find the best empirical support for the
RT assumption. In addition, by offering a way in
which physical measure recovery assumptions may
be taken and translated into risk-neutral ones for
pricing, there is much practical value in this model.

In a follow-up paper to the above-mentioned work,
Zhang (2003) develops a multifactor model of
default swap pricing, and examines the implied
recovery forecasts from the model of Argentina’s
sovereign debt default. The model separates recov-
ery rates from default probabilities and finds that in
the period much before default, the model calibrates
very well, but performs less well closer to default,
no doubt on account of additional factors affect-
ing the market, not picked up in the parsimonious
model that was used. Short maturity contracts are
particularly hard to price.

This model is a tour de force. It provides closed-
form solutions, and as expected, finds that risk-
neutral default probabilities are higher than those
under the statistical measure. The default-risk pre-
mium is very volatile over the sample. The model’s
factors align well with the slope of the US term
structure, the level of long-term rates, and the J.P.
Morgan emerging market bond index (EMBI).
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7 Summary and speculation

Recovery models are truly proving that creative
theory helps makes good sense of possibly weak
data. We know a lot now about the determi-
nants of recovery rates, and their relationship to
default probabilities. Improvements in our models
are resulting in tighter bounds on the range of recov-
ery rates. These models are tractable and simple to
calibrate.

Models help in transforming general uncertainty
into quantifiable risk. It is at the cusp of this meta-
morphosis that new markets are born. We appear
to be close to seeing rapid growth in markets for
recovery risk.
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