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ESTIMATING DEFAULT PROBABILITIES IMPLICIT IN EQUITY PRICES
Tibor Janosi,a Robert Jarrow,b,∗ and Yildiray Yildirimc

This paper uses a reduced-form credit risk model to estimate default probabilities implicit in
equity prices. For a cross-section of firms, a time-series regression of monthly equity returns
is estimated. We show that it is feasible to infer the firm’s probability of default implicit
in equity returns. However, the existence of price bubbles and the difficulty in modeling
equity price risk premium confound the estimation of these default probabilities, generating
potentially biased estimates with large standard errors. Comparing these default intensities
with those obtained from historical data or implicitly from debt prices confirms this result.

1 Introduction

Given the recent exponential growth in the credit
derivatives market (see Risk Magazine, 2000), credit
risk modeling and estimation has become a topic
of current interest. The theoretical literature is
quite extensive (see Bielecki and Rutkowski, 2000,
for a review). The empirical literature estimating
reduced-form credit risk models has concentrated
on using debt prices (see Duffee, 1999; Duffie
and Singleton, 1997; Duffie et al., 2000; Janosi
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et al., 2002; Madan and Unal, 1998), credit
derivative prices (see Hull and White, 2000, 2001),
or bankruptcy histories (see Altman, 1968; Chava
and Jarrow, 2002; Shumway, 2001; Zmijewski,
1984). Equity prices have only been used to esti-
mate default parameters for structural models (see
Delianedis and Geske, 1998). The purpose of this
paper is to use equity prices in conjunction with a
reduced-form credit risk modeling approach to esti-
mate default probabilities. The approach utilized is
a slight generalization of the model contained in
Jarrow (2001).

The data used for this investigation are equity prices
from CRSP and debt prices from the University
of Houston’s Fixed Income Database over the time
period May 1991–March 1997. The observation
interval is 1 month. Debt prices consist of bids taken
from Lehman Brothers trading sheets on the last
calendar day in each month, see Warga (1999) for
additional details.
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ESTIMATING DEFAULT PROBABILITIES 179

Fifteen different firms are included in this study,
where the firms are chosen to stratify various
industry groupings: financial, food and beverages,
petroleum, airlines, utilities, department stores, and
technology. The same 15 firms as in Janosi et al.
(2002) are included so that a comparison of the
different estimation procedures can be performed.

Eight different models for equity returns are inves-
tigated herein, the simplest models containing
no default. Using a rolling estimation proce-
dure, for each month during this observation
period, the equity model’s parameters (including
the bankruptcy parameters) are estimated using a
time-series regression on monthly equity returns.
In this procedure, only information available to the
market at the time that the equations are estimated
is utilized.

First, the analysis supports the feasibility of estimat-
ing default probabilities implicit in equity returns.
In a relative comparison of the eight models, in-
sample root mean squared error goodness-of-fit
tests and out-of-sample generalized cross-validation
statistics support the necessity of including default
parameters into the equity return model. The best
performing default intensity depends on the spot
rate of interest but not on an equity market index,
confirming similar results that Janosi et al. (2002)
obtained when using debt prices.

Second, we find that equity returns contain a bubble
component not captured by the Fama and French
(1993, 1996) four-factor model for equity’s risk
premium. This bubble component, proxied by the
firm’s P/E ratio, is significant for many of the firms
in our sample.

Third, due to the possible existence of equity price
bubbles and the difficulty in modeling equity risk
premium, the default intensity estimates obtained
appear to confound these quantities. Indeed, a com-
parison of the default intensity estimates obtained

herein with those obtained using either historical
data or implicitly from debt prices indicates that
the equity-based default intensities are significantly
larger. By extrapolation, this possible model mis-
specification also casts doubt on the reliability of the
equity-based default probability estimates obtained
using structural models as in Delianedis and Geske
(1998), confirming the previous conclusions of
Jarrow and van Deventer (1998, 1999) and Jarrow
et al. (2002) in this regard. This is also consistent
with the inability of structural models, using equity
price information, to explain credit spreads in cor-
porate debt, see Collin-Dufresne et al. (2001), Eom
et al. (2002) and Huang and Huang (2002).

The previous literature estimating reduced-form
credit risk models using debt prices include Duffee
(1999), Duffie and Singleton (1997), Duffie et al.
(2000), Janosi et al. (2002), Madan and Unal
(1998). Duffie and Singleton (1997) estimate swap
spreads, Madan and Unal (1998) estimate yields
on thrift institution certificates of deposit, and
Duffie et al. (2000) estimate credit and liquid-
ity spreads for Russian debt. Both Duffee (1999)
and Janosi et al. (2002) estimate default intensi-
ties using US corporate debt. As mentioned earlier,
we will compare our estimated default intensities
with those from Janosi et al. (2002). Bankruptcy
prediction models using historical bankruptcy data
include Altman (1968), Chava and Jarrow (2002),
Shumway (2001) and Zmijewski (1984), among
others. A structural model for estimating default
intensities is Delianedis and Geske (1998).

An outline of this paper is as follows. Section 2
presents the model structure. Section 3 provides
a description of the data and Section 4 estimates
the state variable process parameters. The equity
model parameter estimation is discussed in Sections
5–10. Section 11 compares the default parameter
intensities estimated using the equity model to those
obtained using debt prices by Janosi et al. (2002).
A conclusion is provided in Section 12.
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180 JANOSI ET AL.

2 The model structure

This section introduces the notation and provides a
generalization of the reduced-form credit risk model
for equity returns contained in Jarrow (2001).
Default-free zero-coupon bonds of all maturities
and a firm’s common stock are traded. Markets are
assumed to be frictionless with no arbitrage oppor-
tunities, but equity prices may contain bubbles.

Let p(t , T ) represent the time t price of a default-
free dollar paid at time T where 0 ≤ t ≤ T . The
instantaneous forward rate at time t for date T is
defined by f (t , T ) = −∂ log p(t , T )/∂T , with the
spot rate of interest r(t ) = f (t , t ).

Consider a firm issuing equity. This firm may
default. Let τ be the random variable representing
the first time of default and let

N (t ) =
{

1 if τ ≤ t
0 otherwise

(1)

denote its point process. We assume that this point
process has an intensity, denoted by λ(t ). λ(t )�
gives the approximate probability of the firm’s
default over the time interval [t , t + �].1

Equity pays dividends and has a liquidating payoff
at time TL. The time t value of all of these payments
equals the value of the equity (per share), denoted
by ξ (t ). These promised dividends and liquidating
payoff are made, unless the firm defaults. If default
occurs, the equity holders lose everything.2

We need to develop some notation for these
promised payments to equity. The regular dividends
Dt are paid at times t = 1, 2, . . . , TD. We assume
that these dividends are deterministic quantities,
placed in an escrow account and paid for sure.3

The requirement that these dividends are determin-
istic implicitly determines the date TD. For many
equities TD will be a month or less. The liqui-
dating dividend L(TL) is paid at time TL unless

default occurs prior to this date. The liquidating
dividend consists of the time TL (future) value of
all unannounced and random dividends paid over
(TD, TL), plus the remaining resale value of the firm
at time TL.

Let S(t ) represent the time t present value of the
liquidating dividend, conditional upon no default
prior to time t . There is some evidence, for exam-
ple, the recent price growth of internet stocks,4 that
stock prices contain a “bubble” or “monetary value”
component, see Jarrow and Madan (2000). For
simplicity, we model the bubble component as a
random process that is proportional to the present
value of the liquidating dividend:

S(t )
(

e
∫ t

0 µθ (u) du − 1
)

(4)

where µθ (u) ≥ 0 is the continuous return in the
stock price due to the bubble component.

Given this set-up, it is easy to see5 that the per share
equity value at time t is given by

ξ (t ) =



S(t )e
∫ t

0 µθ (u) du + ∑TD
j≥t Djp(t , j)

if t < τ

0 if t = τ .
(5)

The share price consists of the present value of
the liquidating dividend (S(t )) compounded by the
bubble (µθ (t )), and the (announced) deterministic
dividends (Dj for j = t , . . . , TD).

To obtain an empirical formulation of the above
model, more structure needs to be imposed on
the stochastic nature of the economy. Exactly fol-
lowing Jarrow (2001),6 we consider an economy
that is Markov in three state variables: the spot
rate of interest, the cumulative excess return on
an equity market index, and the liquidating divi-
dend process. For the spot rate of interest, we use
a single-factor model with deterministic volatilities,
sometimes called the extended Vasicek model. This
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ESTIMATING DEFAULT PROBABILITIES 181

model has two parameters: a mean reversion param-
eter (a) and the spot rate’s volatility (σr ). The second
state variable Z (t ) is the cumulative excess return on
an equity market index. The equity market index
follows a geometric Brownian motion with volatil-
ity (σm). The correlation coefficient between the
return on the market index and changes in the spot
rate of interest is (ϕrm). The third state variable is
the liquidation value of the firm’s equity, denoted
by L(t ). This liquidation value is assumed to follow
a geometric Brownian motion with volatility (σL)
and with ϕmL and ϕrL representing the correlation
of the liquidation value with the market index and
changes in the spot rate of interest, respectively.

For analytic tractability, the default intensity process
is assumed to be linear in the spot rate of interest and
the cumulative excess return on the equity market
index, that is,

λ(t ) = λ0 + λ1r(t ) + λ2Z (t )

where λ0, λ1, λ2 are constants (6)

Under this structure, it is shown in Jarrow (2001)
that the present value of the liquidating dividend
can be rewritten as

S(t )

= L(t )

p(t , TL)
e−λ1σ

2
1 (t ,TL)−λ1σLϕrL

∫ TL
t b(u,T ∗

L ) du

× e−λ2ϕrmη(t ,TL)−λ2σLϕmL(TL−t )2/2ν(t , TL) (7)

where

ν(t , T )

= p(t , T )e−λ0(T −t )−λ1µ1(t ,T )

× e+(2λ1+λ2
1)σ 2

1 (t ,T )/2−λ2Z (t )(T −t )

× e+(1+λ1)λ2ϕrmη(t ,T )+[T −t]3λ2
2/6

µ1(t , T ) =
∫ T

t
f (t , u) du +

∫ T

t
b(u, T )2 du/2,

σ 2
1 (t , T ) =

∫ T

t
b(u, T )2 du

b(u, t ) = σr (1 − e−a(t−u))/a

and

η(t , T ) = − (σr/a3)[1 − e−a(T −t )]
+ (σr/a2)e−a(T −t )(T − t )

+ (σr/2a)[T − t]2

Substitution of (7) into the stock price expression
(5) yields the final valuation formula.

Unfortunately, observing only a single value for
the stock price at each date leaves this system
under-determined as there are more unknowns
(L(t ), λ0, λ1, λ2) than there are observables (ξ (t )).7

To overcome this situation, the stochastic process
for L(t ) is used to transform expression (5) into
a time-series model for the firm’s equity returns.
Unfortunately, this transformation introduces the
equity price’s risk premium into the estimation pro-
cedure. In this regard, it is shown in the appendix
that8

log




[
ξ (t ) − ∑TD

j≥t Djp(t , j)
]

[
ξ (t − �) − ∑TD

j≥t−� Djp(t − �, j)
]

 − r(t − �)� ≈

+ λ0� + λ1

((
b(t − �, TL)2

2

)
� + log

(
p(t , TL)

p(t − �, TL)

))

− λ2[Z (t )(TL − t ) − Z (t − �)(TL − t + �)]
+ λ1λ2ϕrmb(t , TL)(TL − t )�

+ [σL�L(t − �) + µθ (t − �) − (1/2)σ 2
ξ ]�

+ ε(t − �) (8)

where ε(t − �) ≡ σL(wL(t ) − wL(t − �)) and
�L(t ) is the liquidation value’s risk premium.

Expression (8) gives a time-series expression for the
stock’s return over the time period [t −�, t]. This is
a generalization of the typical asset-pricing model to
include a firm’s default parameters. This expression
forms the basis for our empirical estimation in the
subsequent sections.
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182 JANOSI ET AL.

One can think of this model for equity returns in
three different, but related ways. The first interpre-
tation of expression (8) is that it is equivalent to a
reduced-form credit risk model for the firm’s equity.
This interpretation follows the method of deriva-
tion. The second interpretation of expression (8) is
that it is a type of structural model for the firm’s
equity where the firm’s liquidation value (assets less
liabilities) is exogenously given and default occurs
according to a default intensity process correlated
with the randomness inherent in the firm’s liqui-
dation value. Finally, the third interpretation of
expression (8) is that it is a generalized asset-pricing
model with bankruptcy explicitly parameterized
within the equity’s return process. Given this per-
spective, expression (8) makes explicit the bond
market factor discussed in Fama and French (1993).

3 Description of the data

The time period covered in this study is May 1991–
March 1997. The interval for computing equity
returns is 1 month. For each firm, and for each
month in the observation period, we will be fitting
a time-series regression of equity returns going back
in time 4 years (48 months). Thus, we lose the first 4
years of our observation interval, giving time-series
regressions for each firm and for each month from
May 1995–March 1997.

All individual firm equity data (including earn-
ings, dividends, etc.) are obtained from CRSP. For
the equity market index, we used the S&P 500
index. For estimating an equity risk premium, we
will employ the Fama–French benchmark portfolios
(book-to-market factor (HML), small firm factor
(SMB) and a momentum factor (UMD). These
monthly portfolio returns were obtained from Ken
French’s webpage.9

The US Treasury prices used for this investigation
were obtained from the University of Houston’s

Fixed Income Database. The data consists of
monthly bid prices of all outstanding bills, notes,
and bonds taken from Lehman Brothers’ trading
sheets on the last calendar day in each month; see
Warga (1999) for additional details. Being such a
large database (containing over two million entries),
the potential for data errors is quite large. Indeed,
a careful examination of the data confirmed this
suspicion. Hence, we filtered the data to remove
obvious data errors. We excluded Treasury bonds
with inconsistent or suspicious issue/dated/matu-
rity dates and matrix prices. Lastly, using a median
yield filter of 2.5%, we also removed US Treasury
debt listings whose yields exceeded the median yield
by this percent. After filtering, there are approxi-
mately 29 100 US Treasury prices left in the sample
set.

The same 20 firms as in Janosi et al. (2002) were ini-
tially selected for analysis. These firms were selected
to stratify various industry groupings: financial,
food and beverages, petroleum, airlines, utilities,
department stores, and technology. Due to unavail-
ability of balance sheet data or stock prices, five of
these companies were eliminated. The remaining
15 firms included in this study and the industry
represented by each firm are provided in Table 1.
The Moody’s and S&P’s ratings for each company’s
debt issues at the start of our sample period (May
24, 1991) are also included.

As mentioned previously, the interval for equity
returns is 1 month. The monthly return interval was
chosen for two reasons. First, the default parameter
estimation using debt prices in Janosi et al. (2002)
was based on monthly data, so monthly equity
returns will provide an equivalent comparison.
Second, and more importantly, it is believed
that the use of monthly data for equities elimi-
nates market-microstructure noise more prevalent
in smaller return intervals (daily or weekly) (see
Dimson, 1979; Schwartz and Whitcomb, 1977a,b;
Smith, 1978).
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ESTIMATING DEFAULT PROBABILITIES 183

Table 1 Details of the firms included in the empirical investigation

Ticker SIC First date Last date Number Moodys S&P
symbol code used in the used in the of

estimation estimation bonds

Financials
Bankers Trust NY bt 6022 01/31/1994 04/30/1994 3 A1 AA
Merrill Lynch & Co mer 6211 12/31/1991 03/31/1997 14 A2 A

Food & beverages
Pepsico Inc pep 2086 12/31/1991 03/31/1997 8 A1 A
Coca-Cola Ent. Inc cce 2086 12/31/1991 06/30/1994 3 A2 AA−

Airlines
AMR Corporation amr 4512 02/29/1992 08/31/1994 2 Baa1 BBB+
Southwest Airlines luv 4512 05/31/1992 03/31/1997 3 Baa1 A−

Utilities
Carolina Power Light cpl 4911 08/31/1992 01/31/1993 3 A2 A
Texas Utilities Ele Co txu 4911 04/30/1994 03/31/1997 4 Baa2 BBB

Petroleum
Mobil Corp mob 2911 12/31/1991 02/29/1996 3 Aa2 AA

Department stores
Sears Roebuck + Co s 5311 12/31/1991 08/31/1996 7 A2 A
Wal-Mart Stores, Inc wmt 5331 12/31/1991 03/31/1997 3 Aa3 AA

Technology
Eastman Kodak ek 3861 01/31/1992 09/30/1994 3 A2 A−

Company
Xerox Corp xrx 3861 12/31/1991 03/31/1997 4 A2 A
Texas Instruments txn 3674 10/31/1992 03/31/1997 3 A3 A
Intl Bus Machines ibm 3570 01/31/1994 03/31/1997 3 A1 AA−

Ticker symbol is the firm’s ticker symbol. SIC is the standard industry code. Number of bonds corresponds to the number of distinct
bond issues used in the estimation. Moodys refers to Moodys’ debt rating for the company’s senior debt on the first date used in the
estimation. S& P refers to S& P’s debt rating for the company’s debt on the first date used in the estimation.

4 Estimation of the state variable process
parameters

To implement the estimation of the equity
return process, we use a two-step procedure.
In step one, we first estimate the parame-
ters for the state variable processes. Step two
uses these estimates as constants in the equity
return estimation. Step two is discussed in
Section 5.

4.1 Spot rate process parameter estimation

The inputs to the spot rate process evolution are
the forward rate curves over an extended observa-
tion period ( f (t , T ) for all months t ∈ January
1975–March 1997) and the spot rate parameters
(a, σr ).

For the estimation of the forward rate curves, a two-
step procedure is also utilized. First, for a given time
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184 JANOSI ET AL.

t , the discount bond prices (p(t , T ) for various T )
are estimated by solving the following minimization
problem:


choose (p(t , T ) for all relevant
T ≤ max {Ti : i ∈ It })

to minimize
∑

i∈It
[Bi(t , Ti) − Bi(t , Ti)bid]2

(9)
where

Bi(t , Ti) =
ni∑

j=I

Ctj p(t , tj)

is a US Treasury security with coupons of Cj dollars
at times tj for j = 1, . . . , ni where tni = Ti is
the maturity date, It is an index set containing the
various USTreasury bonds, notes, and bills available
at time t , and Bi(t , Ti)bid is the market bid price for
the ith bond with maturity Ti .

The discount bond prices’ maturity dates T coin-
cide with the maturities of the Treasury bills, and
the coupon payment and principal repayment dates
for the Treasury notes and bonds.

Step 2 is to fit a continuous forward rate curve
to the estimated zero-coupon bond prices (p(t , T )
for all T ≤ max {Ti : i ∈ I }). We use the maxi-
mum smoothness forward rate curve as developed
by Adams and van Deventer (1994) and refined by
Janosi and Jarrow (2002). Briefly, we choose the
unique piecewise, fourth-degree polynomial with
the left and right end points left “dangling” that
minimizes∫ max {Ti : i∈It }

t
|∂2f (t , s)/∂ s2|ds

For the estimation of the spot rate parameters
(a, σr ), the procedure follows that used in Janosi
et al. (2002). A rolling estimation of the parame-
ters using only information available at the time of
the estimation is performed, making the parameter
estimates (at , σrt ) dependent on time t as well. The

procedure is based on an explicit formula for the
variance of the default-free zero-coupon bond prices
under the extended Vasicek model (see Heath et al.,
1992). For � = 1/12 (a month), the expression is

vart [ log (P(t + �, T )/P(t , T )) − r(t )�]
=

(
σ 2

rt (e
−at (T −t ) − 1)2/a2

t

)
� (10)

First, we fix a time to maturity T − t ∈ {3 months,
6 months, 1 year, 5 years, 10 years, the longest
time to maturity of an outstanding Treasury bond
closest to 30 years}. Then, we fix a current month
t ∈ {May 1991–March 1997}. Going backwards in
time 60 months (5 years), we compute the sample
variance, denoted νtT , using the smoothed forward
rate curves previously generated. Note that the sam-
ple variance depends on both the date of estimation
and the bond’s maturity. Then, for each month
t ∈ {May 1991–March 1997}, to estimate the
parameters (σrt , at ) we run a nonlinear regression

νtT = (σ 2
rt

(
e−at (T −t ) − 1)2/a2

t

)
� + etT (11)

across the bond time to maturities T − t ∈
{1/4, 1/2, 1, 5, 10, longest time to maturity closest
to 30} where etT is the error term.

The parameter estimates are

Min Mean Max Std. dev.

art 0.0109 0.0282 0.0428 0.0101
σrt 0.0100 0.0109 0.0117 0.0004

The R2 for each of these monthly nonlinear regres-
sions (not reported) exceeded 0.99 in all cases. The
spot rate volatility (σrt ) is nearly constant over this
period. In contrast, the mean reverting parameter
(art ) appears to be more volatile.
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To test for the time series stability of these param-
eter estimates, a unit root test was performed.10

For the volatility σrt , the test rejects a unit root,
implying the time series is stationary. In contrast,
one cannot reject a unit root for the mean reverting
parameter at .

4.2 Market index parameter estimation

Although the equity returns are monthly, for esti-
mating the parameters of the market index we use
daily data. This is done because daily data is avail-
able for the market index, and the higher frequency
data will provide less noisy estimates since market
microstructure considerations are less important for
an index (than they are for individual firms). Daily
observations of the market return and the 3-month
T-bill yield are available from CRSP. Using the daily
S&P 500 index price data and the daily 3-month
T-bill spot rate data, we estimate the parameters of
the market index process (σm, ϕrm).

As previously mentioned, this estimation is based
on daily data (� = 1/365). As before, the proce-
dure involves a rolling estimation of the parameters
using only information available at the time of the
estimation. For a given day t ∈ {May 24, 1990–
March 31, 1997}, we go back in time 365 business
days and estimate the time-dependent sample vari-
ance and correlation coefficients (σmt , ϕrmt ) using
the sample moments, that is,

σ 2
mt = vart

(
M (t ) − M (t − �)

M (t − �)

)
1

�

and

ϕnnt

= corrt

(
M (t ) − M (t − �)

M (t − �)
, r(t ) − r(t − �)

)
(12)

The parameter estimates are

Min Mean Max Std. dev.

σmt 0.0982 0.1261 0.1897 0.0270
ϕt −0.2706 −0.0990 0.1262 0.1142

The market volatility is relatively constant between
0.1 and 0.2 over this observation period. The cor-
relation coefficient appears to be more variable. As
before, to test for the stability of the parameters a
unit root test was performed. The results show that
a unit root can be rejected at the 90% percent con-
fidence level for the market volatility but not for the
correlation coefficient.11

With the parameter estimates for the market volatil-
ity (σmt ) and the daily 3-month Treasury bill yields,
the excess cumulative return on the market process
Z (t ) is computed,12 starting the time series on May
24, 1991.

5 Equity return estimation

Given the state variable parameters as estimated
in the previous sections, this section presents the
estimated equity return model. The basis for this
estimation is expression (8). To empirically imple-
ment expression (8), we need to specify models for
both the risk premium and the equity price bubble.

Following Fama and French (1993, 1996), we
use a four-factor asset-pricing model with the fac-
tors being the excess return on a market portfolio,
SMB(t ), HML(t ), and UMD(t ), that is,

σL�L(t − �, X (t − �))�

= β0

[
M (t ) − M (t − �)

M (t − �)
− r(t − �)�

]
+ β1[SMB(t )] + β2[HML(t )] + β3[UMD(t )]

(13)
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186 JANOSI ET AL.

where SMB(t ) is the difference between the return
on a portfolio of small stocks and the return on
a portfolio of large stocks at time t , HML(t ) is
the difference between the return on a portfolio
of high-book-to-market stocks and the return on
a portfolio of low-book-to-market stocks at time t ,
and UMD(t ) is a momentum factor.

The equity price bubble is proxied by the price earn-
ings ratio and possibly the stock’s own variance,
that is,

− (1/2)σ 2
ξ (t )� + µθ (t − �, X (t − �))�

= β4[σ 2
ξ (t )�] + β5

[
Price

Earnings
(t )

]
(14)

where

σ 2
ξ (t ) ≡ var

(
ξ (t ) − ξ (t − �)

ξ (t − �)

)
1

�

The stock’s own variance is included with an arbi-
trary coefficient to see if it differs from its theoretical
value of −(1/2) in expression (8). There is also a
concern that the SMB(t ), HML(t ), and UMD(t )
factors may already include an adjustment for bub-
bles. For this reason, the subsequent regressions are
run both with and without the P/E ratio included.

For the estimation we fix (TL−t ) = 20 years and we
set TD = t . The first restriction makes the firm’s val-
uation horizon 20 years, making equity comparable
with long-term debt. The second restriction implies
that all future dividends are viewed as random. Con-
sequently, we only need to make an adjustment for
dividends in the payout month.

Substitution of the above into expression (8) yields:

log

(
ξ (t )

ξ (t − �)

)
− r(t − �)�

if no divident over [t − �, t]
log

(
ξ (t )

ξ (t − �) − Dxp(t − �, x)

)
− r(t − �)�

if dividend at x ∈ [t − �, t]




≈ �0 + �1

[
log

(
p(t , TL)

p(t − �, TL)

)

+
(

b(t − �, TL)2

2

)
�

]
+ �2[Z (t )(TL − t )

− Z (t − �)(TL − (t − �))]
+ β0

[
M (t ) − M (t − �)

M (t − �)
− r(t − �)�

]
+ β1[SMB(t )] + β2[HML(t )] + β3[UMD(t )]
+ β4[σ 2

ξ (t )�] + β5

[
Price

Earnings
(t )

]
(15)

where

�0 = + λ0� + λ1λ2ϕrmb(t , TL)(TL − t )�

�1 = λ1

�2 = − λ2

To insure that the intensity process is non-negative
when both λ1 and λ2 are zeros, we impose
the constraint that �0 ≥ 0 in the estimation.
The final computations for the default parameters
are

λ0 = (�0/�) − �1�2ϕrmb(t , TL)(TL − t )

λ1 = �1

λ2 = − �2

The time period covered is May 1991–March 1997.
For each firm, a time-series regression is run using
48 months of historical data. Thus, the first regres-
sion estimation occurs 4 years into the data set
on May 31, 1995. For each subsequent month,
until March 1997, the regression is re-estimated
and parameter estimates obtained. This generates
23 regressions for each firm’s returns. As before, only
information available to the market at the time of
the estimation is utilized. This rolling estimation
procedure gives a monthly time series of parameter
estimates (λ0t , λ1t , λ2t , β0t , β1t , β2t , β3t , β4t , β5t )
based on 46 (48 − 2) months of overlapping
data. The choice of a 4-year estimation period was
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based on trading off the stability of the estimates
versus larger standard errors. Although longer esti-
mation periods are likely to make the standard
errors smaller, they also imply that structural shifts
are more likely to occur, making the estimated
parameters less stable.

Eight different models for equity returns are esti-
mated. The models differ with respect to the
number of independent variables included in the
regression. Models 1 and 2 have no default (λ0 ≡
λ1 ≡ λ2 ≡ 0). They differ only in the inclusion of
a P/E ratio (β5 ≡ 0 or not). Models 3–8 include
default, and they differ with respect to the default
intensity investigated and the inclusion of the P/E
ratio or not. In particular, models 3 and 4 have
only λ0 non-zero. Models 5 and 6 have both λ0

and λ1 non-zero. Models 7 and 8 have all default
parameters non-zero. These eight models are nested
and a relative comparison of model performance is
subsequently provided.

To summarize the monthly time series estimates
across all models and across all times, Table 2 pro-
vides the average values for the point estimates of
the parameters and their t -statistics.13 The average
adjusted R2 is also included. The values in Table 2
are averages over the number of months in the obser-
vation period (May 1995–March 1997) for which
the linear regression estimates of the parameters are
computed.14 Summary statistics for various F -tests
are also provided. The first F -test is for the null
hypothesis (β0t = β1t = β2t = β3t = β4t = 0).
Given are the average P-scores of the F -tests (across
the number of regressions). The F -tests for mod-
els 3, 5, and 7 test for the joint hypothesis that
all default parameters are zero, that is, λ0t = 0,
λ0t = λ1t = 0, and λ0t = λ1t = λ2t = 0,
respectively. The F -tests from models 2, 4, 6, and
8 test the hypothesis that β5t = 0. The subsequent
sections discuss these statistics and various tests
for the relative performance of the different equity
models.

A typical time series graph of the default intensities
for Eastman Kodak (ek) using models 3–8 is con-
tained in Fig. 1. As depicted, all six models exhibit
similar patterns in the default intensities. The mag-
nitude of the default intensity appears to be quite
large, exceeding 0.3 for all dates and models.

Table 3 provides some summary statistics (both
in- and out-of-sample) regarding the quality of the
models fit to the data. Included are the average root
mean squared error, the average generalized cross-
validation statistic, the average default intensity, the
average standard error of the default intensity, and
the average 1-year default probability.

6 Analysis of the time series properties of the
parameters

Under the assumed model structure, the default
and equity risk premium parameters (λ0t , λ1t , λ2t ,
β0t , β1t , β2t , β3t ) should be constant across time.
The 4-year estimation period was selected to better
insure this hypothesis, by minimizing the structural
shifts in the economy that would more likely occur
using a longer horizon interval. Given measurement
error in the input data (equity prices and the state
variable parameters) and its effect on the parame-
ter estimates, we test the hypothesis that the time
series variation in these parameters is solely due to
random (white) noise. Alternatively stated, we test
to see if the parameter estimates follow a random
walk around a given mean. A unit root test is used
in this regard.

Table 4 contains a summary of the unit root rejec-
tions across model types. As seen, we accept a unit
root (non-stationarity) for almost all the param-
eters in all the models. This includes both the
default parameters and the risk premium coeffi-
cients. Acceptance of the unit root implies that
the model parameters may be non-stationary. This
non-stationarity could be due to a confounding
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Table 2 Averages of the parameter estimates and t -scores from the equity model regression

λ0 λ1 λ2 β0 β1 β2 β3 β4 β5 R2 F -test
Financials
1—Bankers Trust NY (bt)
Model 1 1.7055∗∗ 0.0071∗∗ 0.0102∗∗ −0.0018 −2.3971∗∗ 0.4873 0.0000

5.5380 1.8227 2.7373 −0.4994 −2.3400
Model 2 1.7051∗∗ 0.0068∗∗ 0.0097∗∗ −0.0024 −2.8753∗∗ 0.0034 0.4901 0.4676

5.5066 1.7420 2.5609 −0.6517 −2.3452 0.7640
Model 3 0.1851 1.6377∗∗ 0.0061∗ 0.0088∗∗ −0.0029 −3.4759∗∗ 0.4967 0.3083

1.3881 5.2676 1.5567 2.2794 −0.8168 −2.6669
Model 4 0.3244 1.6041∗∗ 0.0057∗ 0.0084∗∗ −0.0028 −3.5133∗∗ −0.0054 0.5028 0.5216

1.2759 5.0361 1.4421 2.1534 −0.7874 −2.6798 −0.6020
Model 5 0.1859 0.1406 1.5122∗∗ 0.0065∗ 0.0079∗∗ −0.0036 −3.4779∗∗ 0.5025 0.4394

1.3817 0.6617 4.1266 1.6377 1.8964 −0.9790 −2.6482
Model 6 0.3446 0.1710 1.4390∗∗ 0.0062∗ 0.0073∗∗ −0.0036 −3.5364∗∗ −0.0061 0.5105 0.4674

1.3526 0.7739 3.7553 1.5408 1.6815 −0.9708 −2.6819 −0.7244
Model 7 0.1976 0.1214 −0.0168 −1.4618 0.0060∗ 0.0072∗∗ −0.0032 −3.5981∗∗ 0.5208 0.4325

1.4670 0.5707 1.1576 −0.3581 1.4694 1.7106 −0.8617 −2.7542
Model 8 0.3526 0.1513 −0.0167 −1.5191 0.0057 0.0066∗ −0.0032 −3.6556∗∗ −0.0060 0.5284 0.4726

1.4129 0.6847 1.1432 −0.3763 1.3782 1.5082 −0.8541 −2.7857 −0.7129

2—Merrill Lynch & Co (mer)
Model 1 2.0601∗∗ 0.0046 0.0055 0.0063∗ −1.7785∗∗ 0.8292 0.0000

5.6185 1.0160 1.2179 1.5668 −8.1829
Model 2 1.9509∗∗ 0.0033 0.0035 0.0041 −1.9064∗∗ 0.0089∗∗ 0.8379 0.1008

5.3521 0.7323 0.7375 0.9959 −8.2971 1.7342
Model 3 0.2643∗∗ 1.8714∗∗ 0.0033 0.0034 0.0026 −1.9523∗∗ 0.8412 0.3857

2.0564 5.0857 0.7421 0.7097 0.6240 −8.4074
Model 4 0.3161 1.8729∗∗ 0.0033 0.0035 0.0024 −1.9552∗∗ −0.0023 0.8426 0.7275

1.0685 4.9728 0.7342 0.7279 0.5489 −8.3476 −0.2172
Model 5 0.2584∗∗ 0.0420 1.8468∗∗ 0.0035 0.0035 0.0023 −1.9474∗∗ 0.8432 0.5592

1.9930 0.1695 4.2686 0.7653 0.6451 0.5291 −8.2949
Model 6 0.2970 0.0317 1.8555∗∗ 0.0034 0.0036 0.0022 −1.9505∗∗ −0.0017 0.8441 0.7553

0.9655 0.1165 4.2352 0.7466 0.6597 0.4903 −8.2079 −0.1569
Model 7 0.2468∗∗ 0.0163 −0.0098 0.1971 0.0031 0.0032 0.0030 −1.9320∗∗ 0.8477 0.6244

1.8878 0.0662 0.8235 −0.0362 0.6715 0.5695 0.6549 −8.1654
Model 8 0.2649 0.0109 −0.0100 0.1827 0.0030 0.0033 0.0028 −1.9348∗∗ −0.0008 0.8486 0.7547

0.8587 0.0387 0.8120 −0.0310 0.6487 0.5670 0.6191 −8.0735 −0.0851

Food & Beverages
3—Pepsico Inc (pep)
Model 1 1.1323∗∗ −0.0058∗ −0.0046 0.0053∗ −0.8301∗∗ 0.5877 0.0000

3.7001 −1.4687 −1.2377 1.5369 −4.3056
Model 2 1.1177∗∗ −0.0057∗ −0.0046 0.0049 −0.9515∗∗ 0.0053 0.5889 0.7647

3.5745 −1.4432 −1.2189 1.3207 −4.3600 0.2765
Model 3 0.0841 1.0959∗∗ −0.0059∗ −0.0049 0.0046 −1.3522∗∗ 0.5887 0.6246

0.6271 3.4971 −1.4903 −1.2944 1.2792 −4.6109
Model 4 0.3186 1.0721∗∗ −0.0065∗ −0.0058∗ 0.0053 −1.2471∗∗ −0.0436 0.5936 0.4869

0.9245 3.3861 −1.6000 −1.4473 1.4093 −4.4420 −0.7454
Model 5 0.0845 0.0094 1.0859∗∗ −0.0059∗ −0.0050 0.0046 −1.3592∗∗ 0.5894 0.8507

0.6180 0.0484 2.9236 −1.4430 −1.2179 1.1967 −4.5569
Model 6 0.3328 0.0421 1.0313∗∗ −0.0064∗ −0.0061 0.0051 −1.2688∗∗ −0.0457 0.5944 0.4781

0.9341 0.1931 2.7222 −1.5436 −1.3965 1.3045 −4.3840 −0.7608
Model 7 0.0872 −0.0024 −0.0035 0.5229 −0.0063∗ −0.0052 0.0049 −1.4123∗∗ 0.5956 0.9442

0.6355 −0.0015 0.3777 0.1955 −1.5102 −1.2625 1.2656 −4.5377
Model 8 0.3723 0.0316 −0.0061 −0.0044 −0.0070∗∗ −0.0066∗ 0.0056 −1.3114∗∗ −0.0523 0.6023 0.4356

1.0168 0.1483 0.5364 −0.0011 −1.6455 −1.4841 1.4027 −4.3540 −0.8496

4—Coca-Cola (cce)
Model 1 0.9856∗∗ −0.0028 0.0001 0.0009 0.5367 0.1675 0.0000

2.2356 −0.5606 −0.0089 0.1999 0.9575
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Table 2 Continued
λ0 λ1 λ2 β0 β1 β2 β3 β4 β5 R2 F -test

Model 2 0.9706∗∗ −0.0025 −0.0002 0.0007 0.5427 0.0243 0.1764 0.5772
2.1831 −0.4840 −0.0607 0.1582 0.9561 0.5613

Model 3 0.2255 0.9211∗∗ −0.0041 −0.0003 0.0003 −0.8996 0.1581 0.4780
0.8963 2.0779 −0.7770 −0.0693 0.0822 −0.2253

Model 4 0.2226 0.9103∗∗ −0.0038 −0.0005 0.0002 −0.8706 0.0215 0.1667 0.5924
0.8748 2.0344 −0.6907 −0.1140 0.0561 −0.2095 0.5302

Model 5 0.2467 −0.4447 1.3239∗∗ −0.0057 0.0027 0.0027 −1.1775 0.2043 0.2999
0.9980 −1.4881 2.5788 −1.0530 0.4505 0.5240 −0.3747

Model 6 0.2431 −0.4390 1.3083∗∗ −0.0054 0.0024 0.0025 −1.1430 0.0205 0.2115 0.6180
0.9711 −1.4567 2.5229 −0.9616 0.3948 0.4874 −0.3542 0.5049

Model 7 0.2506 −0.4291∗ 0.0249 5.8008∗ −0.0054 0.0035 0.0024 −1.2668 0.2368 0.3130
1.0267 −1.4390 −1.1105 1.6003 −0.9962 0.5922 0.4650 −0.4320

Model 8 0.2503 −0.4226 0.0255 5.8969∗ −0.0050 0.0032 0.0023 −1.2459 0.0221 0.2455 0.5735
1.0149 −1.4060 −1.1225 1.6021 −0.8961 0.5275 0.4317 −0.4194 0.5758

Airlines
5—AMR Corporation (amr)
Model 1 1.7603∗∗ 0.0065 0.0008 −0.0028 −0.2679 0.3543 0.0000

4.3989 1.3297 0.1303 −0.5812 0.2237
Model 2 1.9060∗∗ 0.0060 0.0012 −0.0027 −0.8753 −0.0100∗∗ 0.4100 0.0724

4.8285 1.2410 0.2359 −0.5693 −0.3361 −1.9794
Model 3 0.0000 1.7603∗∗ 0.0065 0.0008 −0.0028 −0.2679 0.3543 0.0756

0.0000 4.2846 1.2610 0.1285 −0.5741 0.1048
Model 4 0.0000 1.9060∗∗ 0.0060 0.0012 −0.0027 −0.8753 −0.0100∗∗ 0.4100 0.0685

0.0000 4.7145 1.1764 0.2328 −0.5622 −0.1961 −1.9470
Model 5 0.0000 −0.2262 1.9712∗∗ 0.0058 0.0024 −0.0015 −0.3713 0.3669 0.3243

0.0000 −0.8031 4.0794 1.0795 0.4104 −0.3012 0.0564
Model 6 0.0000 −0.3201 2.2250∗∗ 0.0049 0.0036 −0.0009 −1.0727 −0.0111∗∗ 0.4331 0.0416

0.0000 −1.1553 4.6410 0.9422 0.6597 −0.1805 −0.2787 −2.1406
Model 7 0.0000 −0.2615 −0.0272 −2.8612 0.0048 0.0012 −0.0010 −0.3585 0.4082 0.5419

0.0000 −0.9433 1.3987 −0.6147 0.8927 0.2143 −0.2007 0.0650
Model 8 0.0000 −0.3658 −0.0295∗ −2.9848 0.0038 0.0024 −0.0002 −1.0852 −0.0116∗∗ 0.4797 0.0294

0.0000 −1.3552 1.6313 −0.7042 0.7245 0.4523 −0.0397 −0.2785 −2.2907

6—Southwest Airlines Co (luv)
Model 1 2.0166∗∗ 0.0034 0.0113∗ 0.0014 −1.6570∗∗ 0.4663 0.0000

3.1244 0.4052 1.5801 0.2680 −4.0185
Model 2 1.9524∗∗ 0.0032 0.0109∗ 0.0001 −1.7540∗∗ 0.0410 0.4796 0.4857

2.9775 0.3842 1.5162 0.0848 −4.0080 0.7684
Model 3 0.2486 1.9001∗∗ 0.0028 0.0100 −0.0007 −1.8198∗∗ 0.4909 0.4773

1.1639 2.9004 0.3169 1.3567 −0.0306 −4.1869
Model 4 0.4029 1.8841∗∗ 0.0026 0.0098 −0.0007 −1.8199∗∗ −0.0424 0.4947 0.6616

0.9320 2.8407 0.2807 1.2747 −0.0320 −4.1351 −0.4210
Model 5 0.2167 −0.7461∗∗ 2.5738∗∗ 0.0005 0.0149∗∗ 0.0030 −1.7444∗∗ 0.5301 0.1702

1.0517 −1.7237 3.4433 0.0318 1.8983 0.4334 −4.0043
Model 6 0.2009 −0.7405∗ 2.5646∗∗ 0.0003 0.0148∗∗ 0.0028 −1.7507∗∗ 0.0047 0.5329 0.7065

0.5453 −1.6337 3.3338 0.0041 1.8072 0.4096 −3.9784 −0.0436
Model 7 0.2153 −0.7722∗∗ −0.0073 1.3422 −0.0002 0.0145∗∗ 0.0033 −1.7367∗∗ 0.5338 0.2532

1.0131 −1.7537 0.3367 0.2600 −0.0490 1.8144 0.4647 −3.7165
Model 8 0.1939 −0.7694∗∗ −0.0077 1.2768 −0.0004 0.0144∗∗ 0.0032 −1.7418∗∗ 0.0059 0.5370 0.6808

0.5259 −1.6703 0.3580 0.2153 −0.0826 1.7187 0.4464 −3.6858 −0.0446

Utilities
7—Carolina Power Light (cpl)
Model 1 0.8464∗∗ −0.0031 0.0081∗∗ 0.0060∗∗ −1.8684∗∗ 0.8275 0.0000

3.4567 −1.0833 2.7034 2.2368 −10.7690
Model 2 0.8692∗∗ −0.0029 0.0084∗∗ 0.0064∗∗ −1.6545∗∗ −0.0039 0.8294 0.6732

3.4627 −0.9636 2.7031 2.2443 −10.4473 −0.4180
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Table 2 Continued
λ0 λ1 λ2 β0 β1 β2 β3 β4 β5 R2 F -test

Model 3 0.0015 0.8452∗∗ −0.0031 0.0081∗∗ 0.0060∗∗ −1.8686∗∗ 0.8276 0.6866
0.0195 3.3190 −1.0666 2.6154 2.0881 −10.5615

Model 4 0.0204 0.8641∗∗ −0.0028 0.0085∗∗ 0.0065∗∗ −1.6537∗∗ −0.0058 0.8301 0.6597
0.1347 3.3663 −0.9208 2.6785 2.2081 −10.3224 −0.3607

Model 5 0.0015 0.2135 0.6614∗∗ −0.0025 0.0069∗∗ 0.0048∗∗ −1.8507∗∗ 0.8348 0.5397
0.0202 1.2838 2.2047 −0.8351 2.1013 1.6044 −10.6269

Model 6 0.0247 0.2162 0.6790∗∗ −0.0020 0.0074∗∗ 0.0053∗∗ −1.6434∗∗ −0.0068 0.8367 0.5864
0.1632 1.2784 2.2413 −0.6682 2.2060 1.7529 −10.3838 −0.4392

Model 7 0.0014 0.1985 −0.0099 −1.0943 −0.0030 0.0064∗∗ 0.0051∗∗ −1.8352∗∗ 0.8406 0.5845
0.0186 1.1775 0.8539 −0.4656 −0.9768 1.9236 1.6896 −10.4632

Model 8 0.0243 0.2028 −0.0096 −1.0226 −0.0025 0.0068∗∗ 0.0056∗∗ −1.6729∗∗ −0.0061 0.8416 0.5987
0.1628 1.1816 0.8276 −0.4373 −0.8090 2.0200 1.8106 −10.2392 −0.4042

8—Texas Utilities Ele Co (txu)
Model 1 0.2394 −0.0040 0.0032 0.0035 −3.0857∗∗ 0.2101 0.0000

0.9406 −1.3261 1.0673 1.2746 −1.4274
Model 2 0.2289 −0.0041 0.0033 0.0034 −3.0423∗∗ −0.0003 0.2278 0.3541

0.8906 −1.3279 1.0838 1.2506 −1.3262 −0.2301
Model 3 0.3137∗∗ 0.1219 −0.0055∗∗ 0.0016 0.0015 −9.3617∗∗ 0.2715 0.0868

2.0807 0.4848 −1.8441 0.4914 0.5680 −2.5419
Model 4 0.3038∗∗ 0.1159 −0.0056∗∗ 0.0017 0.0016 −9.1432∗∗ −0.0001 0.2847 0.4086

2.0012 0.4577 −1.8153 0.5256 0.5676 −2.4208 −0.1703
Model 5 0.2923∗∗ 0.3495∗∗ −0.1838 −0.0043∗ −0.0004 −0.0002 −8.7331∗∗ 0.3513 0.0299

2.0143 2.2115 −0.6802 −1.4823 −0.1872 −0.0642 −2.4598
Model 6 0.2853∗∗ 0.3400∗∗ −0.1828 −0.0045∗ −0.0003 −0.0002 −8.6330∗∗ 0.0004 0.3594 0.4957

1.9478 2.1258 −0.6678 −1.4826 −0.1400 −0.0486 −2.3671 −0.0639
Model 7 0.3179∗∗ 0.3524∗∗ 0.0031 0.3425 −0.0048∗ −0.0006 −0.0004 −9.2299∗∗ 0.3783 0.0084

2.1802 2.2318 −0.4410 0.2814 −1.5949 −0.2461 −0.1406 −2.6065
Model 8 0.3108∗∗ 0.3449∗∗ 0.0031 0.3446 −0.0049∗ −0.0006 −0.0004 −9.1404∗∗ 0.0005 0.3835 0.5869

2.1040 2.1517 −0.4214 0.2679 −1.5812 −0.2036 −0.1258 −2.5058 −0.0277

Petroleum
9—Mobil Corp (mob)
Model 1 0.6879∗∗ −0.0040∗∗ 0.0031 0.0031 0.8424 0.3943 0.0000

3.5411 −1.7330 1.3104 1.4253 1.1439
Model 2 0.6894∗∗ −0.0040∗∗ 0.0029 0.0031 1.5378 −0.0028 0.4077 0.6808

3.4993 −1.7207 1.2137 1.4223 0.9900 −0.3968
Model 3 0.0208 0.6915∗∗ −0.0040∗∗ 0.0031 0.0029 0.4696 0.3918 0.7177

0.1722 3.4903 −1.7137 1.3185 1.3094 0.4455
Model 4 0.1189 0.6977∗∗ −0.0039∗∗ 0.0029 0.0025 0.9164 −0.0087 0.4104 0.5255

0.6085 3.5211 −1.6896 1.1782 1.0502 0.6263 −0.7237
Model 5 0.0148 0.1288 0.5683∗∗ −0.0036∗ 0.0022 0.0023 0.7714 0.3991 0.6784

0.1187 0.9309 2.4188 −1.5405 0.8667 0.9591 0.5468
Model 6 0.0990 0.1062 0.5939∗∗ −0.0037∗ 0.0021 0.0020 1.1824 −0.0077 0.4165 0.5572

0.4662 0.7204 2.4838 −1.5411 0.8082 0.8308 0.7100 −0.5981
Model 7 0.0100 0.1215 −0.0093 −1.0949 −0.0040∗∗ 0.0018 0.0025 0.9026 0.4294 0.6201

0.0758 0.8823 0.9046 −0.4177 −1.6474 0.7026 1.0606 0.6053
Model 8 0.0903 0.1013 −0.0095 −1.1141 −0.0039∗ 0.0016 0.0023 1.1509 −0.0067 0.4420 0.5932

0.4118 0.6927 0.8999 −0.3860 −1.6236 0.6470 0.9280 0.6972 −0.5050

Department Stores
10—Sears Roebuck + Co (s)
Model 1 1.7989∗∗ 0.0076∗∗ 0.0091∗∗ 0.0002 −1.6245∗∗ 0.7250 0.0000

4.9673 1.7257 2.2308 0.0558 −6.8985
Model 2 1.8000∗∗ 0.0077∗∗ 0.0091∗∗ 0.0002 −1.6207∗∗ 0.0004 0.7251 0.8993

4.9109 1.7029 2.1942 0.0370 −6.8048 0.0896
Model 3 0.2045∗∗ 1.6604∗∗ 0.0072∗∗ 0.0076∗∗ −0.0017 −1.7049∗∗ 0.7414 0.1193

1.7729 4.5993 1.6622 1.8643 −0.4050 −7.3206
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Table 2 Continued
λ0 λ1 λ2 β0 β1 β2 β3 β4 β5 R2 F -test

Model 4 0.2060∗∗ 1.6583∗∗ 0.0071∗ 0.0076∗∗ −0.0016 −1.7028∗∗ −0.0006 0.7417 0.8567
1.7510 4.5331 1.6097 1.8399 −0.3818 −7.2227 −0.1255

Model 5 0.2003∗∗ −0.0592 1.7253∗∗ 0.0070∗ 0.0083∗∗ −0.0014 −1.7140∗∗ 0.7445 0.2084
1.7218 −0.2150 3.9934 1.6030 1.8681 −0.3365 −7.1450

Model 6 0.2022∗∗ −0.0650 1.7283∗∗ 0.0069∗ 0.0083∗∗ −0.0013 −1.7128∗∗ −0.0008 0.7449 0.8263
1.7029 −0.2319 3.9507 1.5384 1.8465 −0.3033 −7.0403 −0.1585

Model 7 0.2000∗∗ −0.0826 −0.0120 −0.3629 0.0066∗ 0.0079∗∗ −0.0010 −1.7185∗∗ 0.7497 0.2301
1.7069 −0.3101 0.8340 −0.0926 1.4739 1.7580 −0.2289 −7.1536

Model 8 0.2011∗∗ −0.0868 −0.0118 −0.3231 0.0065 0.0079∗∗ −0.0009 −1.7160∗∗ −0.0006 0.7500 0.8588
1.6815 −0.3192 0.8139 −0.0818 1.4218 1.7356 −0.2066 −7.0422 −0.1108

11—Wal-Mart Stores, Inc (wmt)
Model 1 1.1142∗∗ 0.0061 −0.0023 −0.0104∗∗ −1.6027∗∗ 0.7309 0.0000

3.1272 1.2819 −0.6456 −2.5727 −6.4881
Model 2 0.9708∗∗ 0.0048 −0.0042 −0.0125∗∗ −1.6049∗∗ 0.0481∗∗ 0.7770 0.1709

2.7181 0.9742 −1.1116 −3.0620 −6.8081 1.8077
Model 3 0.1722∗ 1.0112∗∗ 0.0054 −0.0032 −0.0122∗∗ −1.7160∗∗ 0.7688 0.3282

1.5028 2.8215 1.1369 −0.8660 −2.9302 −6.7938
Model 4 0.0849 0.9761∗∗ 0.0046 −0.0042 −0.0127∗∗ −1.7035∗∗ 0.0292 0.7805 0.2938

0.1929 2.6957 0.9270 −1.0791 −3.0526 −6.5209 0.4848
Model 5 0.1703 0.1400 0.8920∗∗ 0.0058 −0.0039 −0.0129∗∗ −1.7159∗∗ 0.7713 0.6799

1.4745 0.5867 2.0960 1.2140 −1.0052 −2.9736 −6.7080
Model 6 0.0857 0.1227 0.8732∗∗ 0.0050 −0.0047 −0.0133∗∗ −1.7067∗∗ 0.0282 0.7824 0.3074

0.1913 0.5196 2.0412 0.9973 −1.1817 −3.0635 −6.4437 0.4672
Model 7 0.1744∗ 0.1579 0.0027 1.2975 0.0061 −0.0038 −0.0135∗∗ −1.7124∗∗ 0.7748 0.9794

1.5007 0.6539 −0.3628 0.7260 1.2471 −0.9672 −3.0628 −6.6328
Model 8 0.0849 0.1409 0.0024 1.2250 0.0053 −0.0046 −0.0139∗∗ −1.7034∗∗ 0.0288 0.7851 0.3215

0.1871 0.5888 −0.3459 0.6983 1.0424 −1.1357 −3.1403 −6.3458 0.4718

Technology
12—Eastman Kodak Company (ek)
Model 1 0.8666∗∗ 0.0011 0.0058 0.0041 −2.5096∗∗ 0.2610 0.0000

1.9389 0.2073 1.0854 0.8540 −2.1621
Model 2 0.8786∗∗ 0.0024 0.0058 0.0048 −3.5253∗∗ 0.0305∗∗ 0.3036 0.0839

2.0149 0.4374 1.0978 1.0228 −2.9134 1.9362
Model 3 0.4802∗∗ 0.7649∗∗ 0.0009 0.0059 0.0007 −4.6018∗∗ 0.3342 0.0583

3.0286 1.8573 0.1667 1.1717 0.1475 −3.7628
Model 4 0.4450∗∗ 0.7882∗∗ 0.0016 0.0059 0.0013 −4.7336∗∗ 0.0088 0.3436 0.4925

2.3317 1.8946 0.2895 1.1580 0.2631 −3.8075 0.5366
Model 5 0.4895∗∗ 0.2574 0.5459 0.0017 0.0046 −0.0007 −4.6967∗∗ 0.3502 0.0855

3.0747 0.9315 1.1273 0.3327 0.8331 −0.1585 −3.8302
Model 6 0.4484∗∗ 0.2738 0.5574 0.0025 0.0044 −0.0001 −4.8483∗∗ 0.0101 0.3613 0.4650

2.3463 0.9810 1.1447 0.4718 0.8047 −0.0424 −3.8896 0.6072
Model 7 0.4781∗∗ 0.2547 0.0108 2.5346 0.0016 0.0047 −0.0006 −4.6179∗∗ 0.3589 0.0976

2.9428 0.9105 −0.4136 0.5916 0.3110 0.8613 −0.1344 −3.6679
Model 8 0.4335∗∗ 0.2714 0.0119 2.7523 0.0025 0.0046 0.0001 −4.7782∗∗ 0.0109 0.3721 0.4240

2.2397 0.9630 −0.4436 0.6245 0.4614 0.8355 −0.0017 −3.7394 0.6520

13—Xerox Corp (xrx)
Model 1 1.2132∗∗ 0.0103∗∗ 0.0018 −0.0045 −0.0673∗∗ 0.6048 0.0000

3.9747 2.6915 0.5044 −1.3459 −4.4713
Model 2 1.2573∗∗ 0.0105∗∗ 0.0024 −0.0041 −0.1420∗∗ −0.0019 0.6125 0.5569

3.9863 2.7132 0.6278 −1.2157 −4.4791 −0.6178
Model 3 0.2090∗∗ 1.0930∗∗ 0.0092∗∗ 0.0007 −0.0062∗∗ −0.8459∗∗ 0.6130 0.3091

1.7526 3.6500 2.5085 0.2410 −1.7953 −5.8850
Model 4 0.2316∗∗ 1.1510∗∗ 0.0095∗∗ 0.0014 −0.0059∗∗ −1.1548∗∗ −0.0025 0.6224 0.4468

1.8683 3.7360 2.5493 0.4143 −1.6946 −5.9673 −0.8275
Model 5 0.2190∗∗ −0.1717 1.2496∗∗ 0.0087∗∗ 0.0018 −0.0054∗ −1.0034∗∗ 0.6210 0.2815

1.7784 −0.8382 3.5418 2.3048 0.5039 −1.4742 −5.9317
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Table 2 Continued
λ0 λ1 λ2 β0 β1 β2 β3 β4 β5 R2 F -test

Model 6 0.2488∗∗ −0.2085 1.3552∗∗ 0.0089∗∗ 0.0028 −0.0048 −1.4161∗∗ −0.0030 0.6336 0.3652
1.9319 −1.0008 3.6874 2.3474 0.7512 −1.3116 −6.0628 −0.9883

Model 7 0.2291∗∗ −0.1694 −0.0055 0.2122 0.0085∗∗ 0.0015 −0.0055∗ −1.0472∗∗ 0.6248 0.4066
1.8413 −0.8127 0.1351 0.6103 2.2263 0.4439 −1.4723 −5.9300

Model 8 0.2580∗∗ −0.2034 −0.0047 0.4475 0.0087∗∗ 0.0025 −0.0050 −1.4584∗∗ −0.0028 0.6372 0.4024
1.9806 −0.9612 0.0851 0.7016 2.2654 0.6818 −1.3210 −6.0472 −0.9213

14—Texas Instruments (txn)
Model 1 1.8865∗∗ 0.0121∗∗ 0.0043 0.0057 −1.2969∗∗ 0.5997 0.0000

3.2322 1.6837 0.7490 0.8613 −4.3193
Model 2 1.7710∗∗ 0.0128∗∗ 0.0051 0.0044 −1.3995∗∗ 0.0111 0.6083 0.3454

3.0068 1.7743 0.8591 0.6572 −4.3960 1.0504
Model 3 0.4585∗∗ 1.6216∗∗ 0.0120∗∗ 0.0027 0.0007 −1.5654∗∗ 0.6291 0.1243

2.3821 2.9045 1.7538 0.5159 0.0978 −5.2857
Model 4 0.6052∗∗ 1.6467∗∗ 0.0115∗∗ 0.0019 0.0007 −1.5630∗∗ −0.0083 0.6350 0.5676

2.2246 2.9321 1.6593 0.4037 0.0916 −5.0617 −0.3976
Model 5 0.4606∗∗ −0.2366 1.8318∗∗ 0.0111∗ 0.0040 0.0020 −1.5919∗∗ 0.6331 0.1731

2.3408 −0.6163 2.7818 1.5817 0.6849 0.2898 −5.1557
Model 6 0.6180∗∗ −0.2677 1.8893∗∗ 0.0104∗ 0.0034 0.0021 −1.5895∗∗ −0.0090 0.6397 0.5253

2.2450 −0.6848 2.8358 1.4626 0.5904 0.3036 −4.9065 −0.4403
Model 7 0.4560∗∗ −0.1984 0.0317 7.4758∗∗ 0.0125∗∗ 0.0054 0.0015 −1.6093∗∗ 0.6487 0.1904

2.3349 −0.5150 −1.1841 1.7555 1.7373 0.8434 0.2132 −5.2705
Model 8 0.5710∗∗ −0.2234 0.0296 7.1323∗∗ 0.0119∗ 0.0049 0.0016 −1.6197∗∗ −0.0058 0.6528 0.5866

2.1218 −0.5680 −1.1086 1.6770 1.6216 0.7665 0.2175 −5.0215 −0.2559

15—International Business Machines (ibm)
Model 1 0.9832∗∗ −0.0092∗ −0.0076 −0.0113∗∗ 0.4104 0.2812 0.0000

2.0200 −1.4656 −1.2198 −2.0725 1.0783
Model 2 1.0009∗∗ −0.0092∗ −0.0075 −0.0103∗∗ 0.1364 −0.0016 0.2867 0.5534

2.0352 −1.4598 −1.1911 −1.7640 0.7597 −0.5997
Model 3 0.3041 0.8861∗∗ −0.0090∗ −0.0080 −0.0126∗∗ −1.0142 0.3125 0.2402

1.3755 1.8288 −1.4502 −1.3135 −2.3075 −0.3027
Model 4 0.2940 0.9050∗∗ −0.0090∗ −0.0079 −0.0117∗∗ −1.2047 −0.0014 0.3173 0.6189

1.3131 1.8431 −1.4371 −1.2775 −1.9893 −0.3822 −0.5111
Model 5 0.3426∗ −0.6866∗∗ 1.5084∗ −0.0110∗∗ −0.0032 −0.0091∗∗ −1.3997 0.3841 0.0716

1.5996 −2.1204 2.7341 −1.8386 −0.5187 −1.6619 −0.6027
Model 6 0.3332∗ −0.6800∗∗ 1.5194∗∗ −0.0110∗∗ −0.0031 −0.0084∗ −1.5464 −0.0011 0.3877 0.6688

1.5322 −2.0763 2.7191 −1.8160 −0.5019 −1.4399 −0.6467 −0.4409
Model 7 0.3324∗ −0.7040∗∗ 0.0085 3.1610 −0.0112∗∗ −0.0030 −0.0087∗ −1.3941 0.3956 0.0928

1.5415 −2.1559 −0.0678 0.6100 −1.8344 −0.4854 −1.5317 −0.5959
Model 8 0.3227∗ −0.6970∗∗ 0.0087 3.2185 −0.0112∗∗ −0.0029 −0.0079 −1.5573 −0.0012 0.3996 0.6456

1.4740 −2.1109 −0.0718 0.6092 −1.8090 −0.4655 −1.3107 −0.6512 −0.4741

In each cell under the columns (λ0, λ1, λ2, β0, β1, β2, β3, β4, β5), the first number is average parameter estimates across the months in
the observation period from the equity model regressions. They are presented for each company and for each model type, separated by
industries. The second entry is the average the t -score for the corresponding average parameter estimate. This t -score is adjusted for the
fact that the regressions contain overlapping time intervals. All t -scores test the null hypothesis that the coefficient is zero, except for β4.
For β4, the null hypothesis is −1/2.
Models 1 and 2 have no default. Models 3 and 4 have a constant default intensity. Models 5 and 6 have the default intensity dependent
on the spot rate of interest. Models 7 and 8 have the default intensity dependent on the spot rate of interest and a market index. The
number of observations per regression is 48. The number of regressions in the average is 23. The average R2 is given.
The F -test column contains the average P-score where the P-scores are obtained from the F -tests of the individual regressions. The
P-score from an individual F -test corresponds to the probability of rejecting the null hypothesis when it is true. The first row corresponds
to the null hypothesis (β0 = β1 = β2 = β3 = β4 = 0). The F -tests for models 3, 5, and 7 test for the joint hypothesis that all default
parameters are zero, i.e. λ0 = 0, λ0 = λ1 = 0, and λ0 = λ1 = λ2 = 0, respectively. The F -tests from models 2, 4, 6 and 8 test the
hypothesis that β5 = 0.
∗∗Significant at 10% level.
∗Significant at 15% level.
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Figure 1 Time series estimates of Eastman Kodak Company’s intensity function.

of the default and risk premium parameter esti-
mates. Given the underlying variables related to
both quantities are correlated, multicollinearity in
the linear regression may be a problem.

7 Analysis of Fama–French four-factor model
with no default

Before analyzing the default parameters, it is impor-
tant to document the performance of the simple
Fama–French four-factor model with no default.
Table 2 contains the estimates for the coefficients of
the Fama–French four-factor model with and with-
out a P/E ratio (models 1 and 2, respectively) and
their t -scores. The F -test for model 1 in Table 2
tests the hypothesis that the model is significant (i.e.
β0t = β1t = β2t = β3t = β4t = 0). For every
firm, the average p-value for this F -test is 0.0000,
strongly rejecting the hypothesis of no significance.
This test confirms the need to include the Fama–
French four –Factor model to explain stock risk
premiums. The average R2 for model 1 is 0.5018.

8 Analysis of a bubble component (P/E ratio)
in stock prices

This section tests for the significance of a bubble
component in equity returns by testing the null
hypothesis that the P/E ratio is insignificant, that is,
β5t = 0. The F -test for model 2 in Table 2 also tests
this hypothesis. For models 1 and 2 (not including
default), the average p-values for three firms (mer,
amr, and ek) are significantly different from zero.
The individual t -scores for β5t show significance
for four firms (mer, amr, wmt, and ek), confirm-
ing this conclusion. This represents 20 (=3/15) to
26% (=4/15) of our firms. For models 3–8 (includ-
ing default), the average F -test gives significance for
only one of these three firms (amr). The average
t -scores for β5t confirm this reduced significance.
For amr alone (among the three: mer, amr, and
ek), the estimated coefficient for the constant in
the regression (λ0) is zero.

It appears that for models with no default (mod-
els 1 and 2), the P/E ratio proxies for a bubble
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Table 3 Summary Statistics for Model Performance

Avg GCV Avg RMSE λ se(λ) 1ydf Avg Y values R2

Financials
1—Bankers Trust NY (bt)
Model 1 0.0027 0.0488 0.0048 0.4873
Model 2 0.0027 0.0490 0.0048 0.4901
Model 3 0.0027 0.0482 0.1851 0.0178 0.1686 0.0048 0.4967
Model 4 0.0028 0.0485 0.3244 0.0736 0.2683 0.0048 0.5028
Model 5 0.0028 0.0485 0.1929 0.0183 0.1758 0.0048 0.5025
Model 6 0.0029 0.0487 0.3531 0.0775 0.2920 0.0048 0.5105
Model 7 0.0028 0.0482 0.1400 0.0217 0.1316 0.0048 0.5208
Model 8 0.0029 0.0484 0.2968 0.0811 0.2519 0.0048 0.5284

2—Merrill Lynch & Co (mer)
Model 1 0.0038 0.0585 0.0027 0.8292
Model 2 0.0037 0.0572 0.0027 0.8379
Model 3 0.0036 0.0564 0.2643 0.0166 0.2319 0.0027 0.8412
Model 4 0.0038 0.0568 0.3161 0.0929 0.2604 0.0027 0.8426
Model 5 0.0038 0.0567 0.2605 0.0171 0.2290 0.0027 0.8432
Model 6 0.0039 0.0573 0.2985 0.1001 0.2496 0.0027 0.8441
Model 7 0.0039 0.0566 0.2148 0.0217 0.1925 0.0027 0.8477
Model 8 0.0040 0.0572 0.2322 0.1062 0.1963 0.0027 0.8486

Food & Beverages
3—Pepsico Inc (pep)
Model 1 0.0026 0.0483 0.0018 0.5877
Model 2 0.0027 0.0487 0.0018 0.5889
Model 3 0.0027 0.0486 0.0841 0.0240 0.0799 0.0018 0.5887
Model 4 0.0028 0.0488 0.3186 0.1220 0.2696 0.0018 0.5936
Model 5 0.0028 0.0491 0.0850 0.0251 0.0805 0.0018 0.5894
Model 6 0.0029 0.0493 0.3349 0.1309 0.2812 0.0018 0.5944
Model 7 0.0029 0.0494 0.0742 0.0288 0.0696 0.0018 0.5956
Model 8 0.0030 0.0495 0.3506 0.1404 0.2930 0.0018 0.6023

4—Coca-Cola (cce)
Model 1 0.0054 0.0693 0.0156 0.1675
Model 2 0.0056 0.0697 0.0156 0.1764
Model 3 0.0054 0.0689 0.2255 0.0640 0.1851 0.0156 0.1581
Model 4 0.0057 0.0694 0.2226 0.0660 0.1838 0.0156 0.1667
Model 5 0.0054 0.0679 0.2246 0.0631 0.1828 0.0156 0.2043
Model 6 0.0056 0.0684 0.2213 0.0651 0.1811 0.0156 0.2115
Model 7 0.0055 0.0674 0.3234 0.0697 0.2530 0.0156 0.2368
Model 8 0.0057 0.0678 0.3252 0.0719 0.2547 0.0156 0.2455
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Table 3 Continued

Avg GCV Avg RMSE λ se(λ) 1ydf Avg Y values R2

Airlines
5—AMR Corporation (amr)
Model 1 0.0044 0.0627 0.0015 0.3543
Model 2 0.0042 0.0607 0.0015 0.4100
Model 3 0.0046 0.0635 0.0000 0.0631 0.0000 0.0015 0.3543
Model 4 0.0044 0.0614 0.0000 0.0597 0.0000 0.0015 0.4100
Model 5 0.0047 0.0636 −0.0112 0.0654 −0.0131 0.0015 0.3669
Model 6 0.0045 0.0610 −0.0159 0.0610 −0.0186 0.0015 0.4331
Model 7 0.0047 0.0624 −0.1212 0.0717 −0.1407 0.0015 0.4082
Model 8 0.0043 0.0592 −0.1345 0.0657 −0.1595 0.0015 0.4797

6—Southwest Airlines Co (luv)
Model 1 0.0113 0.1005 −0.0069 0.4663
Model 2 0.0116 0.1007 −0.0069 0.4796
Model 3 0.0114 0.0998 0.2486 0.0513 0.2160 −0.0069 0.4909
Model 4 0.0119 0.1005 0.4029 0.2547 0.3219 −0.0069 0.4947
Model 5 0.0111 0.0972 0.1798 0.0494 0.1524 −0.0069 0.5301
Model 6 0.0116 0.0981 0.1642 0.2591 0.1244 −0.0069 0.5329
Model 7 0.0116 0.0980 0.1468 0.0671 0.1176 −0.0069 0.5338
Model 8 0.0121 0.0989 0.1246 0.2835 0.0817 −0.0069 0.5370

Utilities
7—Carolina Power + Light (cpl)
Model 1 0.0017 0.0386 −0.0055 0.8275
Model 2 0.0017 0.0389 −0.0055 0.8294
Model 3 0.0017 0.0390 0.0015 0.0078 0.0015 −0.0055 0.8276
Model 4 0.0018 0.0393 0.0204 0.0233 0.0197 −0.0055 0.8301
Model 5 0.0017 0.0386 0.0121 0.0078 0.0133 −0.0055 0.8348
Model 6 0.0018 0.0388 0.0354 0.0231 0.0356 −0.0055 0.8367
Model 7 0.0018 0.0385 −0.0289 0.0100 −0.0286 −0.0055 0.8406
Model 8 0.0019 0.0388 −0.0040 0.0254 −0.0024 −0.0055 0.8416

8—Texas Utilities Ele Co (txu)
Model 1 0.0017 0.0393 0.0024 0.2101
Model 2 0.0018 0.0393 0.0024 0.2278
Model 3 0.0016 0.0378 0.3137 0.0227 0.2688 0.0024 0.2715
Model 4 0.0017 0.0379 0.3038 0.0231 0.2615 0.0024 0.2847
Model 5 0.0015 0.0361 0.3096 0.0211 0.2673 0.0024 0.3513
Model 6 0.0016 0.0363 0.3021 0.0215 0.2618 0.0024 0.3594
Model 7 0.0015 0.0358 0.3406 0.0232 0.2888 0.0024 0.3783
Model 8 0.0016 0.0361 0.3336 0.0238 0.2837 0.0024 0.3835
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Table 3 Continued

Avg GCV Avg RMSE λ se(λ) 1ydf Avg Y values R2

Petroleum
9—Mobil Corp (mob)
Model 1 0.0010 0.0302 0.0115 0.3943
Model 2 0.0011 0.0305 0.0115 0.4077
Model 3 0.0011 0.0305 0.0208 0.0135 0.0201 0.0115 0.3918
Model 4 0.0011 0.0305 0.1189 0.0370 0.1028 0.0115 0.4104
Model 5 0.0011 0.0305 0.0212 0.0143 0.0216 0.0115 0.3991
Model 6 0.0011 0.0306 0.1043 0.0442 0.0910 0.0115 0.4165
Model 7 0.0011 0.0303 −0.0208 0.0158 −0.0212 0.0115 0.4294
Model 8 0.0011 0.0304 0.0577 0.0462 0.0457 0.0115 0.4420

Department Stores
10—Sears Roebuck + Co (s)
Model 1 0.0036 0.0571 0.0007 0.7250
Model 2 0.0038 0.0577 0.0007 0.7251
Model 3 0.0035 0.0556 0.2045 0.0132 0.1840 0.0007 0.7414
Model 4 0.0037 0.0562 0.2060 0.0137 0.1851 0.0007 0.7417
Model 5 0.0037 0.0559 0.1973 0.0136 0.1775 0.0007 0.7445
Model 6 0.0038 0.0565 0.1989 0.0141 0.1787 0.0007 0.7449
Model 7 0.0038 0.0560 0.1511 0.0183 0.1381 0.0007 0.7497
Model 8 0.0040 0.0567 0.1528 0.0190 0.1394 0.0007 0.7500

11—Wal-Mart Stores, Inc (wmt)
Model 1 0.0036 0.0564 −0.0180 0.7309
Model 2 0.0034 0.0546 −0.0180 0.7770
Model 3 0.0035 0.0555 0.1722 0.0167 0.1577 −0.0180 0.7688
Model 4 0.0036 0.0551 0.0849 0.1055 0.0668 −0.0180 0.7805
Model 5 0.0037 0.0558 0.1772 0.0174 0.1625 −0.0180 0.7713
Model 6 0.0037 0.0555 0.0918 0.1082 0.0740 −0.0180 0.7824
Model 7 0.0038 0.0560 0.1878 0.0223 0.1700 −0.0180 0.7748
Model 8 0.0038 0.0557 0.0969 0.1158 0.0793 −0.0180 0.7851

Technology
12—Eastman Kodak Company (ek)
Model 1 0.0052 0.0683 0.0099 0.2610
Model 2 0.0050 0.0662 0.0099 0.3036
Model 3 0.0045 0.0627 0.4802 0.0262 0.3799 0.0099 0.3342
Model 4 0.0047 0.0630 0.4450 0.0365 0.3557 0.0099 0.3436
Model 5 0.0046 0.0626 0.5023 0.0265 0.3945 0.0099 0.3502
Model 6 0.0048 0.0629 0.4620 0.0367 0.3675 0.0099 0.3613
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Table 3 Continued

Avg GCV Avg RMSE λ se(λ) 1ydf Avg Y values R2

Model 7 0.0048 0.0630 0.5324 0.0328 0.4112 0.0099 0.3589
Model 8 0.0049 0.0631 0.4931 0.0431 0.3851 0.0099 0.3721

13—Xerox Corp (xrx)
Model 1 0.0027 0.0486 0.0042 0.6048
Model 2 0.0028 0.0489 0.0042 0.6125
Model 3 0.0025 0.0467 0.2090 0.0199 0.1836 0.0042 0.6130
Model 4 0.0026 0.0468 0.2316 0.0214 0.2021 0.0042 0.6224
Model 5 0.0026 0.0469 0.2106 0.0205 0.1848 0.0042 0.6210
Model 6 0.0026 0.0468 0.2385 0.0221 0.2072 0.0042 0.6336
Model 7 0.0027 0.0471 0.1953 0.0244 0.1725 0.0042 0.6248
Model 8 0.0027 0.0471 0.2259 0.0261 0.1965 0.0042 0.6372

14—Texas Instruments (txn)
Model 1 0.0096 0.0926 0.0089 0.5997
Model 2 0.0098 0.0923 0.0089 0.6083
Model 3 0.0088 0.0875 0.4585 0.0437 0.3635 0.0089 0.6291
Model 4 0.0090 0.0877 0.6052 0.0836 0.4322 0.0089 0.6350
Model 5 0.0091 0.0881 0.4489 0.0462 0.3579 0.0089 0.6331
Model 6 0.0094 0.0882 0.6048 0.0866 0.4332 0.0089 0.6397
Model 7 0.0091 0.0869 0.5750 0.0570 0.4300 0.0089 0.6487
Model 8 0.0094 0.0874 0.6790 0.0993 0.4727 0.0089 0.6528

15—International Business Machines (ibm)
Model 1 0.0066 0.0769 0.0059 0.2812
Model 2 0.0069 0.0775 0.0059 0.2867
Model 3 0.0066 0.0757 0.3041 0.0505 0.2548 0.0059 0.3125
Model 4 0.0069 0.0764 0.2940 0.0522 0.2464 0.0059 0.3173
Model 5 0.0062 0.0725 0.3086 0.0468 0.2543 0.0059 0.3841
Model 6 0.0065 0.0732 0.2996 0.0484 0.2467 0.0059 0.3877
Model 7 0.0064 0.0727 0.3349 0.0551 0.2775 0.0059 0.3956
Model 8 0.0067 0.0734 0.3268 0.0570 0.2715 0.0059 0.3996

Average
Model 1 0.0044 0.0597 0.0026 0.5018
Model 2 0.0045 0.0595 0.0026 0.5174
Model 3 0.0043 0.0584 0.2115 0.0301 0.1797 0.0026 0.5213
Model 4 0.0044 0.0586 0.2596 0.0710 0.2118 0.0026 0.5317
Model 5 0.0043 0.0580 0.2080 0.0302 0.1761 0.0026 0.5417
Model 6 0.0044 0.0581 0.2462 0.0732 0.2004 0.0026 0.5526
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Table 3 Continued

Avg GCV Avg RMSE λ se(λ) 1ydf Avg Y values R2

Model 7 0.0044 0.0579 0.2030 0.0360 0.1641 0.0026 0.5562
Model 8 0.0045 0.0580 0.2371 0.0803 0.1860 0.0026 0.5670

Given are the average generalized cross-validation statistics (GCV), the average root mean squared error (RMSE), the
average default intensity (λ), the average standard error of the default intensity (se(λ)), the average 1-year default
probability (1 ydf ), the average value for the dependent variable in the equity model regression, and the average R2.
The number of observations per regression is 48. The averages are taken across all months from the equity model
regressions. The number of regressions in the average is 23.

Table 4 Unit root test performance across all companies

λ0 λ1 λ2 β0 β1 β2 β3 β4 β5

Model 1 2/15 0/15 1/15 2/15 4/15
Model 2 3/15 1/15 1/15 2/15 3/15 2/15
Model 3 3/15 2/15 1/15 0/15 1/15 4/15
Model 4 2/15 3/15 1/15 0/15 0/15 3/15 2/15
Model 5 2/15 0/15 4/15 1/15 1/15 3/15 2/15
Model 6 3/15 2/15 1/15 3/15 1/15 2/15 4/15 3/15
Model 7 1/15 0/15 2/15 3/15 4/15 1/15 1/15 2/15
Model 8 3/15 1/15 2/15 2/15 4/15 1/15 2/15 2/15 3/15

The entries under the columns correspond to the number of companies for the relevant coefficient where the null hypothesis of a
unit root is rejected at the 90% level. There are 15 total companies—tests for a unit root.

component in stock prices not contained in the
four factors of Fama–French. But, for the models
with default (models 3–8), the P/E ratio becomes
insignificant. The inclusion of a constant in the
regression model (λ0) appears to confound the
bubble component in stock prices.15

An additional test for a possible model misspeci-
fication with respect to the bubble component is
provided by the t -score for the stock’s own vari-
ance (β4). This t -score tests for the null hypothesis
that β4 = −1/2, the theoretical value as given in
expression (8). As indicated, for all models and for
all but four firms (cce, amr, mob, and ibm), one
can reject the null hypothesis that β4 = −1/2.
This rejection is strong evidence consistent with
the stock’s own variance proxying for stock price
bubbles.

In summary, this section provides evidence consis-
tent with the existence of an equity price bubble not
captured in the Fama–French four-factor model.
Both the P/E ratio and the stock’s own variance
appear to be significant explanatory variables in the
equity return regression model.

9 Analysis of the default intensity

As mentioned earlier, the average default intensity
parameters and t -scores are contained in Table 2.
The firms’ estimates are presented in industry
groupings for easy comparison. First to be noticed
is that the fit of the linear regressions are quite
good. The average R2 varies between 0.1581 (for
cce, model 3) to 0.8486 (for mer, model 8). From
Table 3, the average R2 across all models varies
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from 0.5018 for model 1 to 0.5670 for model 8.
R2 uniformly increases across firms with increas-
ing model complexity up to model 8. This is to be
expected because R2 is a measure of the in-sample
fit, and as we progress from model 1 to model 8,
more independent variables are added to the linear
regression.

Second, it is interesting to examine the signs of
the coefficients for the default intensity parame-
ters. The signs of λ1 and λ2 indicate the sensitivity
of the firm’s default likelihood to changes in the
spot rate and the cumulative excess return on the
equity market index, respectively. For example, for
wmt (Wal–Mart Stores) the sign of λ1 is positive
indicating that as interest rates rise, the likelihood
of default increases. Continuing, the sign of λ2 is
negative, indicating that as the market index rises,
the likelihood of default decreases. The signs of
these coefficients differ across firms and between
firms within an industry. An example of different
signs within an industry is for the department stores
grouping, where Sears Roebuck and Company (s)
and Wal–Mart Stores, Inc. (wmt) have contrasting
signs for both the interest rate and market index
variables.

Next, we discuss the statistical significance of these
point estimates. For λ0, the point estimate is signifi-
cantly different from zero in model 3 for seven firms
(mer, txu, s, wmt, ek, xrx, txn, and ibm). The F -test
for model 3 also tests the hypothesis that λ0t = 0.
This test confirms the average t -score results because
the average p-scores are low (below 15% for five
firms). Including the P/E ratio in model 4 elimi-
nates the significance of the default parameter λ0

for two of the seven firms (mer and wmt), indicat-
ing a possible confounding of the default parameter
estimate with equity price bubbles. This suspicion is
confirmed for more complex models 5–8. The pat-
tern with respect to the significance of the default
parameter λ0 is similar to that previously discussed
for models 3 and 4.

With respect to the spot rate coefficient, λ1, the
significance of its t -scores varies across firms and
model types. For four out of the 15 firms, the
average t -score is significantly different from zero
for at least one of models 5–8. This observation is
also supported by the F -test for model 5 (the joint
hypothesis λ0t = λ1t = 0). The average p-scores
for this F -test are less than 20% for five firms (luv,
txu, ek, txn, and ibm). This evidence strongly sup-
ports the inclusion of the interest rate variable in
the default intensity model.

Finally, with respect to the market index coefficient,
λ2, the average t -scores indicate that it is insignif-
icant from zero for all firms except one (amr).
Unfortunately, the introduction of the independent
variable (Z (t )(TL − t ) − Z (t − �)(TL − (t − �)))
into this regression causes a severe multi-collinearity
problem with another independent variable in the
equity risk premium, the excess return on the mar-
ket portfolio. As seen in models 7 and 8, for all
firms the introduction of (Z (t )(TL − t ) − Z (t −
�)(TL − (t − �))) causes the point estimates of
β0 to change dramatically from their values in
models 1–6 and β0 becomes insignificantly differ-
ent from zero. The correlation matrix in Table 5
confirms this multi-collinearity problem. The cor-
relation between these two variables is 0.9934. This
implies that the estimates of the coefficients λ2 and
β0 cannot be separated using this regression model.
This evidence is consistent with a confounding of
the default probability estimates with those of the
equity’s risk premium.

As seen from Table 3, the impact of these different
default intensity models on the point estimates of
the default intensities can be dramatic. For exam-
ple, for mer the average default intensity varies from
−0.0569 in model 7 to 0.3534 for model 6. Neg-
ative default intensities should be interpreted as
being a point estimate of zero. Similar patterns can
also be observed for the other firms in our sample.
This sensitivity is consistent with a confounding of
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Table 5 Correlation matrix for selected independent variables in the equity
model regression

λ1 λ2 β0 β1 β2 β3

λ1 1.0000 0.4685 0.4580 −0.4072 0.2607 0.2896
λ2 0.4685 1.0000 0.9934 −0.1277 −0.3539 0.1141
β0 0.4580 0.9934 1.0000 −0.1449 −0.3765 0.1060
β1 −0.4072 −0.1277 −0.1449 1.0000 −0.5153 0.0850
β2 0.2607 −0.3539 −0.3765 −0.5153 1.0000 −0.0267
β3 0.2896 0.1141 0.1060 0.0850 −0.0267 1.0000

the default probability model with the equity risk
premium and bubble component.

Also documented in Table 3 are the magnitudes
of these default probability estimates. As indicated,
they are quite high relative to historical default
frequencies. Indeed, the average default intensity
across all firms and all models exceeds 0.20, whereas
the magnitude of the average historical default
intensities observed from bankruptcy data is less
than 0.01 (see Chava and Jarrow, 2002). Although
this difference could be due the fact that these esti-
mates obtained are the risk-neutral probabilities, as
opposed to the statistical probabilities, more likely
the difference is due to a confounding of the default
intensity model with both the equity risk premium
and price bubble. As previously highlighted, many
of the preceding test results are consistent with this
second interpretation.

Also to be noticed at this juncture are the mag-
nitudes of the RMSE of the regression model in
comparison to the average magnitude of the depen-
dent variable. The RMSE is an estimate of the
standard error of the unpredictable component
of equity returns. The average magnitude of the
dependent variable is the average equity return over
this period. As indicated in Table 3, the standard
error of the unpredictable component of the equity’s
return is over 10 times the magnitude of its average

value. This is true for all firms in our sample. This
illustrates the magnitude of the “noise” in equity
prices relative to our predictive ability using the
Fama–French four-factor model. This noise inhibits
our ability to estimate the default intensities with a
great deal of precision.

In summary, an analysis of the default intensity
parameters in the equity return regression model
shows that although it is feasible to estimate the
likelihood of default, the estimated intensity process
parameters are confounded by the equity risk pre-
mium and price bubble component. Both default
risk and the equity’s risk premium appear to be
positively correlated. Including both variables in a
regression yields an upward bias in the estimated
default probability (relative to historical default
frequencies).

10 Relative performance of the equity return
models

This section studies the relative performance of
the eight equity return models. For each firm and
for each model’s regression, both a root mean
squared error statistic (RMSE) and a generalized
cross-validation statistic (GCV) are computed. The
RMSE statistic measures the “average” pricing error
between the model and the market price. It is
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an in-sample goodness-of-fit measure. As with all
in-sample goodness of fit measures, a potential
problem with RMSE is that it may provide a biased
picture of the quality of model performance due to a
model over fitting the noise in the data. The second
GCV test statistic is designed to partially overcome
this problem, as an out-of-sample goodness-of-fit
measure that is predictive in nature.16 The lower
the GCV statistic, the better the out-of-sample
model fit.

The average RMSE and GCV statistics for each firm
and model are contained in Table 6. For 13 of the
15 firms, the RMSE statistic is smallest (or within
0.0001 of the smallest value) for models 3–6. For
all 15 firms the GCV statistic is smallest (or within
0.0001 of the smallest value) for models 3–6. This
is strong evidence consistent with the importance
of including the default parameters into the equity
return model and the feasibility of using equity
returns to infer default intensity estimates.

Surprisingly, for no firms except one (txu) do
models 7 and 8 have the smallest GCV statis-
tics. Despite the multi-collinearity problem present
when including Z (t ) into the default intensity pro-
cess, this is strong evidence consistent with the
insignificance of the λ2 coefficient. This relative per-
formance analysis confirms the insignificance of the
λ2 coefficient documented in Janosi et al. (2002) for
the same firms, but using debt prices.

In summary, in terms of the GCV statistic, the
best-fitting models are 3–6. Given the previous evi-
dence with respect to the significance of the interest
rate variable in the default intensity process, the
preferred equity return models are probably 5 and 6.

11 Comparison of default intensities based on
debt versus equity

This section investigates the equality between the
default intensities estimated using the equity returns

with the default intensities as estimated in Janosi
et al. (2002). Using the identical structure, the iden-
tical data, and the same time period as employed
above, Janosi et al. (2002) estimate the expected
loss per unit time λ(t )(1 − δ) implicit in debt
prices, using a reduced-form credit risk model.
Here, 0 ≤ δ ≤ 1 corresponds to the recovery rate
on defaulted debt.

They selected 20 different firms, 15 of which over-
lap with this study (see Table 1). Janosi et al. (2002)
estimated five different liquidity premium models.
We use only the best-fitting model, the constant
liquidity premium. To match the best-fitting equity
pricing model (model 6), we use the intensity func-
tion from Janosi et al. (2002) without the market
index included. For this credit risk model, we have
the monthly time series of the estimated expected
loss per unit time λ(t )(1 − δ) for each of the 15
companies from Janosi et al. (2002) and their stan-
dard errors. Unfortunately, due to non-overlapping
periods of observations in the two studies, only 10
firms are included in this comparison. The five firms
omitted are: amr, bt, cce, cpl, and ek.

Available are estimated intensities λi
e(t ) from the

equity returns for firm i in month t , and estimated
expected losses (per unit time) ai

d (t ) = λi
d (t )(1−δi)

from Janosi et al. (2002) for firm i in month t . The
null hypothesis to be tested is

(debt) ai
d (t )/(1 − δi) = λi

e(t ) (equity)

for all firms i and all months t .

Given an assumed value for the recovery rate δi , we
can do a pair-wise t -test (using the standard errors of
the estimates) of the difference [ai

d (t )/(1 − δi)] −
λi

e(t ) for a given firm i for each month t . Under
the null hypothesis this difference is zero. Unfor-
tunately, this is a joint test of the null hypothesis
and the assumed value of δi . To eliminate this joint
hypothesis, we test for equality of these differences
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Table 6 Test for the equivalence between the default intensities based on
debt prices versus equity prices

η0 η1 Recovery range Avg(λd(t )) Avg(λe(t ))

amr N/A N/A N/A N/A N/A
N/A N/A

bt N/A N/A N/A N/A N/A
N/A N/A

Cce N/A N/A N/A N/A N/A
N/A N/A

cpl N/A N/A N/A N/A N/A
N/A N/A

Ek N/A N/A N/A N/A N/A
N/A N/A

Ibm −1.3253 30.6004 None 0.0103 0.2996
−1.8008 2.1955

luv −4.3092 84.5898 None 0.0104 0.1642
−5.0623 5.2471

mer −2.5844 35.6537 [0.99, 1.00] 0.0100 0.2985
−2.0105 1.4645

mob −1.7100 29.2491 [0.99, 1.00] 0.0036 0.2311
−1.8682 1.7266

pep 0.5209 −8.6911 [0.95, 1.00] 0.0082 0.3349
0.8286 −0.7300

S 0.4483 −7.0506 [0.88, 1.00] 0.0086 0.2058
0.6984 −0.5852

txn 3.0442 −50.7298 [0.94, 1.00] 0.0083 0.6048
1.7638 −1.5520

txu 0.5267 −7.1674 [0.93, 1.00] 0.0061 0.3021
0.9931 −0.7136

wmt 0.5775 −9.3437 [0.00, 1.00] 0.0036 0.0918
0.5621 −0.4802

xrx 1.4597 −27.3956 [0.96, 1.00] 0.0056 0.2385
1.1763 −1.1658

In the fourth and fifth columns, the average default intensities are provided. The debt estimates are
for a zero recovery rate. The equity estimates are for the midpoint of the recovery rate from column 3.
The equity estimation is from May 31, 1995 to March 31, 1997 for all the companies. The debt
estimation time period is contained in Table 1. This table represents the intersecting dates from
both experiments. For the first three columns, we estimate λi

equlty (t ) − λi
debt(t ) = ηi

0 + ηi
1r(t ) + εt .

We report the range of recoveries that makes H0 : ηi
0 = 0 and ηi

1 = 0 insignificant at the 95% level.
The first number is the point estimate, the second is the t -statistic. Only ibm and luv are rejected
for all possible δ.
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over a range of different values for δi from 0 to 1.
If there is a value for δi where the null hypothesis
[ãi

d (t )/(1 − δi)] − λi
e(t ) = 0 is not rejected, then

this value for δi is an estimate of the recovery rate.
The relevant summary statistics for these tests are
contained in Table 6.

For all firms but two (ibm and luv), there is
some recovery rate such that the two estimates can
be viewed as equivalent. This is strong evidence
consistent with equality of the implicit estima-
tion procedures across both equity and debt prices.
However, the recovery rate needed to obtain equal-
ity of the two estimates is in excess of 88%, for
all firms except one (wmt). This recovery rate
is higher than the average recovery rate of 67%
contained in Moody’s (1992) for senior secured
debt over the time period 1974–1991. This over-
estimate of the recovery rate suggests an upward
bias in the estimated default rates obtained from
equity returns, confirming the conclusions from the
previous analyses.

12 Conclusions

This paper uses a reduced-form model to estimate
default probabilities implicit in equity returns. The
model implemented is a generalization of the model
contained in Jarrow (2001). The time period cov-
ered is May 1991–March 1997. Monthly equity
returns on 15 different firms are studied. The firms
are chosen to provide a stratified sample across
various industry groupings.

Three general conclusions can be drawn from this
investigation. First, equity returns can be used to
infer a firm’s default intensities. This is a feasibility
result. Two, equity returns appear to contain a bub-
ble component, as proxied by the firm’s P/E ratio.
Bubbles in equity returns are not completely cap-
tured by the four-factor model of Fama and French
(1993, 1996). Third, due to this imprecision in

modeling equity risk premia, the point estimates
of the default intensities confound with the equity
risk premium. Estimated default probabilities using
equity returns are larger than those obtained based
on either historical bankruptcy data or implicitly
using debt prices. This conclusion casts doubts
upon the reliability of the default probability esti-
mates obtained from equity prices using structural
models as in Delianedis and Geske (1998) (con-
firming the previous conclusions of Jarrow and van
Deventer, 1998, 1999, and Jarrow et al., 2002, in
this regard). This is also consistent with the inability
of structural models using equity price informa-
tion to explain credit spreads in corporate debt (see
Collin-Dufresne et al., 2001; Huang and Huang,
2002; Eom et al., 2002).

Notes

1 The intensity process is defined under the risk neutral
probability.

2 This assumption is easily relaxed, see Jarrow (2001).
3 One could assume that these dividends could be defaulted

on as well, see Jarrow (2001).
4 See Money Magazine April 1999, p. 169 for Yahoo’s P/E

ratio of 1176.6.
5 This is a simple no arbitrage restriction that the present

value of the sum of multiple cash flows equals the sum of
the present values of the cash flows.

6 For the explicit equations, see Jarrow (2001).
7 This is in contrast to the typical situation where there

are multiple debt issues outstanding that can be utilized
to implicitly estimate default intensities when using debt
prices.

8 The appendix contains a minor correction to the formula
contained in Jarrow (2001).

9 The address is:
http://web.mit.edu/kfrenc/www/data_library.html.

10 We perform a Dickey–Fuller (DF) test. The DF test
statistic is the t -statistic for the ρ coefficient in the
regression: yt − yt−1 = µ + ρyt−1 + εt where µ, ρ are
constants and εt is an error term. The null hypothesis of
a unit root for yt is ρ = 0. A rejection of the null hypoth-
esis implies that there is no unit root. The unit root test
statistics are: σr ( − 2.6348) and ar ( − 1.1632).
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11 The unit root test statistics are: σm (−3.9407) and ϕ

(−1.3479).
12 The exact formula for this computation is in Jarrow (2001).
13 The t -score is adjusted to reflect the fact that the regressions

contain overlapping time intervals, see Janosi et al. (2002)
for more details on the adjustment.

14 This is not to be confused with the number of observations
used in the time t regression for a particular firm. At the
time t regression, we use 48 months of data.

15 This should not be surprising. In the standard implemen-
tation of the CAPM, the constant term in the regression
equation is called the “alpha” and it is used to represent
abnormal returns. If the bubble component is not ade-
quately modeled, its time series variation would appear in
the estimate of this coefficient.

16 Roughly speaking, the GCV statistics measures the aver-
age predictive error obtained by systematically eliminating
each data point from the time series regression, predicting
that point’s value with the regression, and then measuring
the “average” predictive error that results, after adjusting
for degrees of freedom (see Wahba, 1985).
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Appendix
From the appendix in Jarrow (2001), we have that:

log


 ξt − ∑TD

j≥t Djν(t , j: e)

ξt−� − ∑T ∗
D

j≥t−� Djν(t − �, j: e)


 = log

(
Lt

Lt−�

)
+

∫ t

t−�

µθ (u) du + λ0�

− λ1

[
− log

(
p(t , TL)

p(t − �, TL)

)
− b(t − �, TL)2�/2

]
− λ2[Z (t )(TL − t ) − Z (t − �)(TL − t + �)]
− λ2

1b(t − �, TL)2�/2 − λ2
2(TL − t )2�/2

+ λ1σLϕrLb(t − �, TL)�

+ λ2σLϕmL(TL − t )�

In the previous expression, the following quantities are unobservable: ϕrL, ϕmL. To eliminate these quantities
from this expression, we compute the variance of the preceding expression.

σ 2
ξ (t )� ≡ vart


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p(t , TL)

p(t − �, TL)

)
− b(t − �, TL)2�/2

]
−λ2[Z (t )(TL − t ) − Z (t − �)(TL − t + �)]]

But, we have that:(
−

(
b(t − �, TL)2

2

)
� − log

(
p(t , TL)

p(t − �, TL)

))
= µ1(t , TL) − µ1(t − �, TL) + DET

= [b(t , TL)r(t ) − b(t − �, TL)r(t − �)]/σr + DET

= b(t , TL)[r(t ) − r(t − �)]/σr + DET
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where DET indicates non-random terms. Also note that

r(t ) − r(t − �) = σr

∫ t

t−�

e−a(ν−t ) dW (ν) + DET

Substitution gives(
−

(
b(t − �, TL)2

2

)
� − log

(
p(t , TL)

p(t − �, TL)

))
=

(
b(t , TL)

∫ t

t−�

e−a(ν−t ) dW (ν)

)
+ DET

Combined we get that:

σ 2
ξ (t )� = vart

[
σL[wL(t ) − wL(t − �)] − λ1

(
b(t , TL)

∫ t

t−�

e−a(ν−t ) dW (ν)

)
−λ2(TL − t )[Z (t ) − Z (t − �)] + DET

]
Computing this variance yields:

σ 2
ξ (t )� ≈ λ2

1b(t , TL)2� + λ2
2(TL − t )2� + σ 2

L �

− 2λ1b(t , TL)σLϕrL� − 2λ2σLϕmL(TL − t )� + 2λ1λ2ϕrmb(t , TL)(TL − t )�

where we have used the facts that:

vart

(∫ t

t−�

e−a(ν−t ) dW (ν)

)
=

∫ t

t−�

e−2a(ν−t ) dν = (1 − e2a�)/2a ≈ �

and ∫ t

t−�

e−a(ν−t ) dν = (1 − ea�)/a ≈ �.

Rearranging the terms gives:

−σ 2
ξ (t )�/2 + σ 2

L �/2 + λ1λ2ϕrmb(t , TL)(TL − t )� ≈ − λ2
1b(t , TL)2�/2 − λ2

2(TL − t )2�/2

+ λ1b(t , TL)σLϕrL� + λ2σLϕmL(TL − t )�

Substitution gives the result:

log

(
ξt − ∑TD

j≥t Djν(t , j: e)

ξt−� − ∑TD
j≥t−� Djν(t − �, j: e)

)
= log

(
Lt

Lt−�

)
+

∫ t

t−�

µθ (u) du + λ0�

+ λ1

[
log

(
p(t , TL)

p(t − �, TL)

)
+ b(t − �, TL)2�/2

]
− λ2[Z (t )(TL − t ) − Z (t − �)(TL − t + �)]
− σ 2

ξ (t )�/2 + σ 2
L �/2 + λ1λ2ϕrmb(t , TL)(TL − t )�

Using Girsanov’s theorem, we have that the original Brownian motion: wL(t ) = ŵL(t ) + ∫ t
0 �L(u) du

where ŵL(t ) is a Brownian motion under the statistical measure and �L(u) is the liquidation value’s risk
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premium. Hence,

log (Lt/Lt−�) = r(t − �)� + σL�L(t − �)� − (1/2)σ 2
L � + σL[wL(t ) − wL(t − �)]

Thus, we have the final result:

log


 ξt − ∑T ∗

D
j≥t Djν(t , j: e)

ξt−� − ∑T ∗
D

j≥t−� Djν(t − �, j: e)


 − r(t − �)�

= σL�L(t − �)� + µθ (t − �)� − σ 2
ξ (t )�/2

+ λ0� + λ1

[
log

(
p(t , TL)

p(t − �, TL)

)
+ b(t − �, TL)2�/2

]
− λ2[Z (t )(TL − t ) − Z (t − �)(TL − t + �)]
+ λ1λ2ϕrmb(t , TL)(TL − t )�

+ σL[wL(t ) − wL(t − �)]
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