
JOIM
www.joim.com

JOURNAL OF INVESTMENT MANAGEMENT, Vol. 1, No. 1, (2003), pp. 45–54

© JOIM 2003

GREAT MOMENTS IN FINANCIAL ECONOMICS: I. PRESENT VALUE
Mark Rubinstein∗

This is the first in a series of articles to appear in this journal on the history of significant
ideas in financial economics. Perhaps the most basic of these is the idea of present value.
Early contributors include Johan de Witt (1671), the famous mathematician Abraham
de Moivre (1725), and the famous scientist Edmund Halley (1761). But it was Irving
Fisher who in 1930 laid the theoretical foundations behind the concept as a by-product
of the standard inter-temporal model of rational consumption choice. In 1938, John Burr
Williams applied the model to the discounting of dividends and derived what later became
known as the Gordon growth formula.

Ideas are seldom born fully clothed, but are rather
dressed by a slow and arduous process of accretion.
In the study of many fields, to achieve deep knowl-
edge of the current state-of-the-art, it is necessary
to appreciate how its ideas have evolved—What are
their origins? By what paths of thought are they
elaborated? How does one idea lead to others? Why
was there once confusion about ideas that now seem
obvious?

Such an understanding has a special significance in
the social sciences. In the humanities, there is lit-
tle sense of chronological progress. For example,
who would argue that, in the last three cen-
turies, English poetry or drama has been written
that surpasses the works of Shakespeare? In the
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natural sciences, knowledge accumulates by largely
uncovering pre-existing and permanent natural pro-
cesses; whereas knowledge in the social sciences can
affect the social evolution that follows its discovery,
which, in turn, largely determines the succeeding
social theory.

In this spirit, this article and its successors that are to
appear in subsequent issues of this journal provide
a history of aspects of the theory of financial eco-
nomics, emphasizing the earliest foundation-setting
contributions. It is not, however, a history of the
practice of finance, and only occasionally refers to
the large real world outside of theoretical finance.
Nonetheless, the “history of financial economics”
is construed quite broadly to include the histori-
cal development of methodological and theoretical
tools used to create this theory, including economics
and mathematics.
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46 MARK RUBINSTEIN

Of necessity, I have selected only a small, but I
hope the most important, portion of the full body
of research that is available on each subject. Some
papers are significant because they plant a seed, ask
what turns out to be the right question, or develop
important economic intuitions; others are impor-
tant because they formalize earlier concepts, making
all assumptions clear, and prove results with mathe-
matical rigor. Mathematical statements or proofs
are also provided, usually set off by small print,
of important and condensable results primarily to
compensate for the ambiguity of words. However,
the proofs are seldom necessary for an intuitive
understanding.

Perhaps this field is like others, but I am nonethe-
less dismayed to see how little care is taken by many
scholars to attribute ideas to their original sources.
Academic articles and books, even many of those
that purport to be historical surveys, occasionally
of necessity but often out of ignorance, oversim-
plify the sequence of contributors to a finally fully
developed theory, attributing too much originality
to too few scholars. No doubt that has inadvertently
occurred in these articles as well, but hopefully to
a much lesser extent than earlier attempts. Even
worse, an important work can lie buried in the for-
gotten past; occasionally, this work is even superior
in some way to the later papers that are typically
referenced.

For example, the Modigliani–Miller theorem
received possibly its most elegant exposition, at its
inception, in a single paragraph contained in a rarely
referenced but amazing book by John Burr Williams
published 20-years before Modigliani and Miller
in 1938 (Williams, 1938). Had his initial insight
been well known and carefully considered, decades
of confusion might have been spared. Sometimes
models and formulae are mistakenly named, implic-
itly attributing them to the wrong source; an
example of this is the “Gordon growth formula”.
Unfortunately, once this type of error takes hold,

it is very difficult to shake lose. Indeed, the error
becomes so ingrained that even prominent publicity
is unlikely to change old habits.

Also, researchers occasionally do not realize that an
important fundamental aspect of a theory was dis-
covered many years earlier. To take a prominent
example, although the Black–Scholes model devel-
oped in the early 1970s is surely one of the great
discoveries of financial economics, fundamentally
it derives its force from the idea that it may be
possible to make up for missing securities in the
market by the ability to revise a portfolio of the few
securities that do exist over time. Kenneth Arrow,
20-years earlier in 1953, was the first to give form
to a very similar idea. In turn, shades of Arrow’s
idea can be found in the famous correspondence
between Blaise Pascal and Pierre de Fermat three
centuries earlier. One of the delightful by-products
of historical research is the connections that one
often uncovers between apparently disparate and
unrelated work—connections that may not have
been consciously at work, but no doubt through
undocumented byways, must surely have exercised
an influence.

Of course, financial economics is not alone in its
tendency to oversimplify its origins. For example,
consider the calculus, well known to have been
invented by Issac Newton and Gottfried Willhelm
Leibnitz. Yet, the invention of calculus can be traced
back to the classical Greeks, in particular, Antiphon,
Euxodus, and Archimedes, who anticipated the
concept of limits and of integration in their use of
the “method of exhaustion” to determine the areas
and volumes of geometric objects (e.g., to estimate
the area of a circle, inscribe a regular polygon in the
circle; as the number of sides of the polygon goes to
infinity, the polygon provides an increasingly more
accurate approximation of the area of the circle).
Galileo Galilei’s work on motion implies that veloc-
ity is the first derivative of distance with respect to
time and acceleration is the second derivative of
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distance with respect to time. Fermat devised the
method of tangents that in substance we use today to
determine maxima and minima of functions. Isaac
Barrow used the notion of differential to find the
tangent to a curve and described theorems for the
differentiation of the product and quotient of two
functions, the differentiation of powers of x, the
change of variable in a definite integral, and the
differentiation of implicit functions.

Despite this view that ideas accumulate by a slow
process usually involving contributions from sev-
eral individuals, occasionally it will seem, even after
all available evidence is examined, that a particular
individual has made a significant intuitive leap that
surmounts a seemingly impassible barrier. When,
in my opinion that has happened, these articles will
celebrate that event by calling it a “Great Moment”
in the history of financial economics.

One caveat: I have tried my best, for each paper or
book cited, to clarify its marginal contribution to
the field. Despite my best efforts, I am certain that I
have omitted MANY important discoveries or even
attributed ideas to the wrong sources, unaware of
even earlier work. I hope the reader will forgive me.
Even better, I ask the reader to take the constructive
step of letting me know the error of my ways.

1 Johan de Witt, Abraham de Moivre,
and Edmund Halley

No doubt the idea of present value has had a long
undocumented history. For example, we know that
the classical Greeks applied their mathematical acu-
men to the inverse problems of calculating simple
and compound interest. In modern times, our first
Great Moment in financial economics came with
the publication in 1671 of Value of Life Annuities
in Proportion to Redeemable Annuities by Johan de
Witt (1625–1672).

A life annuity is a contract that pays the annuitant a
given constant amount every year until the death of
a given individual, the “nominee” (usually the same
as the annuitant), with no repayment of principal.
A generalization of a life annuity is a tontine (named
after a government funding proposal recommended
to the French Cardinal Mazarin in 1652 by Lorenzo
Tonti). In a typical arrangement, a designated group
of annuitants equally divide among themselves a
given constant total every year. As the annuitants
drop out because of their death, those remaining
divide the same total, leaving a greater payment to
each. After only one annuitant remains, he receives
the entire amount. Once he dies, all payments cease.

Bequests in ancient Rome often took the form of
a life annuity to children who were not the first
born; and, beginning in the seventeenth century,
life annuities were used by governments to raise
funds. Although the Romans may have used a crude
adjustment for the expected life of the nominee
(a controversial issue among ancient historians), lit-
tle attempt was made to make this adjustment in the
seventeenth century before de Witt. In what may
be regarded as the first formal analysis of an option
style derivative, de Witt proposed a way to calculate
the value of life annuities that takes account of the
age of the nominee. His method was crude by mod-
ern standards, but he did make use of one of the first
mortality tables. de Witt assumed nominees would
die according to the list given below: Out of every
768 nominees:

6 will die every six months for the first 50 years
4 will die every six months for the next 10 years
3 will die every six months for the next 10 years
2 will die every six months for the next 7 years

Assuming a compound interest rate of 4%, for
each of the 768 times to death, he calculated the
present value of the corresponding annuity and then
took their arithmetic average to be the price of the
annuity.
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48 MARK RUBINSTEIN

Further progress with the valuation of annuities
followed quickly, occupying the attentions of illus-
trious scientists and mathematicians. Abraham de
Moivre (1657–1754), perhaps best known for his
proof of the normal approximation to the binomial,
a precursor of the central limit theorem, in Treatise
of Annuities on Lives (1725), also worked on the life
annuity problem, deriving a closed-form analyti-
cal approximation assuming that the probability of
remaining alive decreased with age in an arithmetic
progression. According to Geoffrey Poitras (2000),
in The Early History of Financial Economics: 1478–
1776: From Commercial Arith-metic to Life Annuities
and Joint Stocks, de Moivre also provided both exact
and quick-calculation approximation results for the
tontine valuation problem, as well as for annuities
written on successive lives.1

In the forgotten age before computers, once it was
desired to determine the effects of interest rates
on contracts, much work was devoted to devel-
oping fast means of computation. These include
the use of logarithms, pre-calculated tables, and
closed-form algebraic solutions to present value
problems. Edmund Halley (1656–1742) in a paper
titled “Of Compound Interest”, published posthu-
mously in 1761, better known, of course, for the
comet that bears his name and many other far
more important achievements, derives (probably
not for the first time) the formula for the present
value of an annual annuity beginning at the end
of year 1 with a final payment at the end of year
T : [X /(r − 1)][1 − (1/rT )], where r is one plus
the annual discrete interest rate of the annuity and
X is the annual cash receipt from the annuity.
Another relatively early derivation can be found in
Irving Fisher (1867–1947), The Nature of Income
and Capital (1906).

Although valuation by present value had appeared
much earlier, Irving Fisher, in The Rate of Interest:
Its Nature, Determination and Relation to Economic
Phenomena (1907), may have been the first to

propose that any capital project should be evaluated
in terms of its present value. Using an arbitrage argu-
ment, he compared the stream of cash flows from
the project to the cash flows from a portfolio of secu-
rities constructed to match the project. Despite this,
according to Faulhaber and Baumol (1988), neither
the Harvard Business Review from its founding in
1922 to World War II, nor widely used textbooks
in corporate finance as late as 1948, made any ref-
erence to present value in capital budgeting. It was
not until 1951 that Joel Dean in his book Capital
Budgeting popularized the use of present value.

2 Irving Fisher

Another Great Moment in financial economics
surely occurred in 1930 with the publication of
Irving Fisher’s The Theory of Interest: As Determined
by Impatience to Spend Income and Opportunity to
Invest It. Here is the seminal work for most of the
financial theory of investments during the twenti-
eth century. Fisher’s 1930 book refines and restates
many earlier results that had appeared in his Appre-
ciation and Interest (1896), The Nature of Capital
and Income (1906), and The Rate of Interest (1907),
and, as Fisher states, were foreshadowed by John
Rae (1796–1872: 1834), to whom Fisher dedicates
his book. Fisher develops the first formal equilib-
rium model of an economy with both intertemporal
exchange and production. In so doing, at one
swoop, he not only derives present value calcula-
tions as a natural economic outcome in calculating
wealth, he also justifies the maximization of present
value as the goal of production and derives determi-
nants of the interest rates that are used to calculate
present value.

He assumes each agent is both the consumer
and producer of a single aggregate consumption
good under certainty. This single good simplifica-
tion allows him to abstract from the unnecessary
complications of the multi-commodity Walrasian
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paradigm, and has ever since been at the heart of the-
oretical research in finance. At each date, exchange
is effected by means of a short-term riskless bond
maturing at the end of the period. In this context,
among its many contributions to economic thought
are (I) an analysis of the determinants of the real rate
of interest and the equilibrium intertemporal path
of aggregate consumption; (II) the “Fisher effect”
relating the nominal interest rate to the real interest
rate and the rate of inflation; and (III) the “Fisher
separation theorem” justifying the delegation of
production decisions to firms that maximize present
value, without any direct dependence on share-
holder preferences, and justifying the separation of
firm financing and production decisions. Most sub-
sequent work in the financial theory of investments
can be viewed as further elaboration, particularly to
considerations of uncertainty and to more complex
financial instruments, for the allocation of con-
sumption across time and across states of the world.

Fisher reconciles the two previous explanations of
the rate of interest, one based on productivity
(“opportunity”) and the other based on consumer
psychology, or time-preference (“impatience”, a
termed coined by Fisher in The Rate of Interest ),
showing that they are jointly needed for a com-
prehensive theory: “So the rate of interest is the
mouthpiece at once of impatience to spend income
without delay and of opportunity to increase
income by delay” (p. 495).

Fisher describes his economy in three ways: in
words, with graphs, and with equations. It is inter-
esting that, even at this time in the development of
economic thought, Fisher finds it necessary to jus-
tify the usefulness of algebraic formulations, point-
ing out that by this method one could be sure that
the number of unknowns and number of indepen-
dent equations are the same. In addition, he writes:

“The contention often met with that the mathematical for-
mulation of economic problems gives a picture of theoretical

exactitude untrue to actual life is absolutely correct. But, to
my mind, this is not an objection but a very definite advan-
tage, for it brings out the principles in such sharp relief that
it enables us to put our finger definitely on the points where
the picture is untrue to real life.” (p. 315)

Fisher develops a simple example with just two time
periods and three consumers for the case where only
consumer time-preference determines interest rates.
Let

r be the equilibrium riskless return
C i

0, C i
1 be the endowed consumption of con-

sumer i at dates 0 and 1
xi

0, xi
1 be the amount of borrowing or lending of

consumer i at dates 0 and 1 which each consumer
can choose subject to his budget constraint: x i

0 +
xi

1/r = 0
C i

0 ≡ C i
0 + xi

0, C i
1 ≡ C i

1 + x i
1 be the opti-

mal amounts of consumption that consumer i
chooses at dates 0 and 1

He then assumes that a consumer’s rate of time-
preference will depend on his chosen consumption
stream:

fi = Fi(C i
0, C i

1) is the rate of time-preference of
consumer i

In the appendix to Chapter 12, Fisher relates the rate
of time-preference to the utility of consumption,
Ui(C i

0, C i
1) such that: fi = [U ′

i (C i
0)/U ′

i (C i
1)] − 1.

He argues that in equilibrium the rate of time-
preference of each consumer must equal the riskless
return, so that

f1 = f2 = f3 = r

For the market to clear, he requires that net borrow-
ing and lending at each date across all consumers be
0: x1

0 + x2
0 + x3

0 = 0 and x1
1 + x2

1 + x3
1 = 0. The

seven unknowns, C 1
0 , C 2

0 , C 3
0 , C 1

1 , C 2
1 , C 3

1 , and r
are matched by seven independent equations.
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A modernized representative agent proof including produc-
tion would be given as below. Let

U (C0), U (C1) be the utility of consumption at dates 0
and 1
ρ be the rate of patience
�0 be the initial endowment of the consumption good
X0 be the amount of �0 used up in production so that
C0 = �0 − X0

f (X0) be the output from production of date 1 consump-
tion so that C1 = f (X0)
W0 be the current wealth of the consumer so that W0 =
C0 + C1/r

Assume that U ′(C ) > 0 (non-satiation), U ′′(C ) < 0 (dimin-
ishing marginal utility), 0 < ρ < 1 (tendency to prefer
current over future consumption), f ′(X0) > 0 (more input
yields more output), f ′′(X0) < 0 (diminishing returns to
scale).
The production problem for the consumer is:

max
C0,C1

U (C0) + ρU (C1)

subject to C0 = �0 − X0 and C1 = f (X0)

Substituting in the constraints, differentiating the utility func-
tion, and setting the derivative equal to zero to characterize
the maximum, it follows that:

U ′(C0)/[ρU ′′(C1)] = f ′(X0)

The exchange problem for the consumer is

max
C0,C1

U (C0) + ρU (C1) subject to W0 = C0 + C1/r

Again, substituting in the constraint, differentiating the utility
function, and setting the derivative equal to zero, it follows
that

U ′(C0)/[ρU ′(C1)] = r

Gathering these two results together:

U ′(C0)/[ρU ′(C1)] = r = f ′(X0) [1]

Thus, we have Fisher’s two-sided determinants of the interest
rate: the equilibrium riskless return equals what we would call
today the marginal rate of substitution (what Fisher called
“the rate of time-preference”) and it equals the marginal
productivity of capital.
For a more concrete example, suppose U (Ct ) = log Ct and
f (X0) = αX β

0 with 0 < β < 1 and α > 0. These satisfy the
derivative conditions on utility and the production function
required above. α can be interpreted as a pure measure of

productivity since the greater α the more output from any
given input. Substituting into Eq. [1]:

ρ−1(C1/C0) = r = αβX0β
−1

Solving this for the unknowns C0 and r :

C0 = (1 + ρβ)−1�0 and

r = αβ[(ρβ/(1 + ρβ))�0]β−1

Differentiating the solution for the riskless return:

dr/dα = β[(ρβ/(1 + ρβ))�0]β−1 > 0 (productivity)

dr/dρ = α(β − 1)�β−1
0 ρ−2 (ρβ/(1 + ρβ))β

< 0 (time-preference)

So, we see a pure isolation of the effects of Fisher’s impatience
(ρ) and opportunity (α) on the interest rate.

Fisher also claims that separate rates of interest for
different time periods are a natural outcome of
economic forces, and not something that can be
arbitraged away in a perfect market.

“The other corollary is that such a formulation reveals the
necessity of positing a theoretically separate rate of interest
for each separate period of time, or to put the same thing in
more practical terms, to recognize the divergence between the
rate for short terms and long terms. This divergence is not
merely due to an imperfect market and therefore subject to
annihilation, as Böhm-Bawerk, for instance, seemed to think.
They are definitely and normally distinct due to the endless
variety in the conformations of income streams. No amount
of mere price arbitrage could erase these differences.” (p. 313)

More generally, Fisher argued that the rate of
interest was determined by: (i) the relative distri-
bution of endowed resources across time; (ii) time-
preferences of consumer/investors; (iii) production
opportunities that provide a way of transforming
aggregate current endowments into aggregate future
consumption; (iv) the general size of endowed
resources; (v) risk aversion and the time-structure of
risk; and (vi) the anticipated rate of inflation. With a
noticeably behavioral orientation, Fisher attributed
factor (ii) to lack of foresight, lack of self-control,
habit formation, expected lifetime, and a bequest
motive. He showed how all six factors would affect
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the decisions made by economic agents and how
these decisions would aggregate up to determine
the equilibrium rate of interest.

Fisher then considered a number of potential objec-
tions to his theory. An objection still popular is
that tying the determinants of interest to aspects
of intertemporal consumption choice may be ele-
gant, but it is too narrow. In fact, interest is largely
determined by the “supply and demand for loanable
funds”. Fisher replies that this supply and demand
is the intermediate effect of the fundamental under-
lying needs of producers to maximize present value
and of consumers to optimally balance their con-
sumption over their lifetimes. But he also admits
that there may be a myriad of institutional influ-
ences on interest rates that he has not considered,
but that these factors will be secondary.

Fisher worded his separation result as follows:

“But we see that, in such a fluid world of options as we are
here assuming, the capitalist reaches the final income through
the cooperation of two kinds of choice of incomes which,
under our assumptions, may be considered and treated as
entirely separate. To repeat, these two kinds of choice are:
first, the choice from among many possible income streams of
that particular income stream with the highest present value,
and secondly, the choice among different possible modifi-
cations of this income stream by borrowing and lending or
buying and selling. The first is a selection from among income
streams of differing market values, and the second, a selec-
tion from among income streams of the same market value.”
(p. 141)

This “separation” must be carefully interpreted to
mean that the second choice is not independent
of the first choice. In order to know what second
choice to make, the implications of the first choice
must be known. However, the first choice can be
made before making the second. Fisher also made
it quite clear that his separation result depends on a
competitive market where the capitalist is “uncon-
scious” of any impact he might have on interest
rates, and he made it clear that his result requires the

equivalency of borrowing and lending rates (perfect
markets).

To derive the separation theorem, continuing with our earlier
example, suppose the production decision were delegated to a
competitive present value maximizing firm. Such a firm would
then choose X0 to:

max
X0

−X0 + f (X0)/r

where it disregards any influence it may have over r (that is,
it chooses X0 as if dX0/dr = 0). Differentiating the present
value and setting the derivative equal to zero, it follows that:
r = f ′(X0), precisely the decision the representative consumer
would have made on his own.

This suggests that, provided firms act as competi-
tive present value maximizers, firms can make the
same production decisions its shareholders would
make on their own without knowledge of their
time-preferences or their endowments. If true, this
dramatically simplifies the problem of resource
allocation in a competitive economy.

Fisher may also have been the first economist to
emphasize the role of what are now called “real
options” in increasing the flexibility of produc-
tion opportunities, which now play a key role in
modern treatments of present value for corporate
investments:

“This brings us to another large and important class of options;
namely the options, of effecting, renewals and repairs, and
the options of effecting them in any one of many different
degrees. . . . But the owner has many other options than that
of thus maintaining a constant stock of goods. He may choose
to enlarge his business as fast as he makes money from it. . . .

A third option is gradually to go out of business. . . . Another
case of optional income streams is found in the choice between
different methods of production, especially between different
degrees of so-called capitalist production. . . . The alterna-
tives constantly presented to most business men are between
policies which may be distinguished as temporary and perma-
nent. The temporary policy involves use of easily constructed
instruments which soon wear out, and the permanent pol-
icy involves the construction at great cost of instruments of
great durability. . . . In all cases, the ‘best’ results are secured
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when the particular series of renewals, repairs, or betterments
is chosen which renders the present value of the perspective
income stream the maximum.” (pp. 194–199)

He also discussed dynamic properties of interest rate
changes, whereby, for example, increasing inter-
est rates leads to a change in the utilization of
production opportunities, which in turn, tends to
stabilize interest rates, creating the mean reversion
we typically observe.

While Fisher provided a qualitative discussion of
the first-order effects of uncertainty, he expressed
considerable pessimism about prospects for formal
generalization of his theory:

“To attempt to formulate mathematically in any useful, com-
plete manner the laws determining the rate of interest under
the sway of chance would be like attempting to express com-
pletely the laws which determine the path of a projectile when
affected by random gusts of wind. Such formulas would need
to be either too general or too empirical to be of much value.”
(p. 316)

So Fisher left it for others to explain a wide variety of
economic phenomena such as insurance, the use of
both debt and equity, the demand for liquidity, the
use of diversified portfolios and the extreme diver-
sity of types of securities with differing returns, all of
which largely rely on uncertainty for their existence.

3 John Burr Williams

John Burr Williams (1899–1989), the author of
the insufficiently appreciated classic The Theory
of Investment Value (1938), was one of the first
economists to interpret stock prices as determined
by “intrinsic value” (i.e., discounted dividends).
Harry Markowitz (1991) writes in his Nobel Prize
autobiography: “The basic concepts of portfolio
theory came to me one afternoon in the library
while reading John Burr Williams’ The Theory of
Investment Value.”

While, as we have seen, Williams did not originate
the idea of present value, he, nonetheless, develops
many implications of the idea that the value of a
stock under conditions of certainty is the present
value of all its future dividends. His general present
value formula is

P0 =
∞∑

t=1

Dt/r(t )t

where Dt is the dividend paid at date t , r(t ) the
current (date t = 0) annualized riskless discount
return for dollars received at date t , and P0 is the
current (date t = 0) value of the stock.

A nice way to build up to this is to start with the recursive
relation Pt = (Dt+1+Pt+1)/r(t +1). Successive substitutions
for Pt through date T , leads to

P0 =
T∑

t=1

Dt/r(t )t + PT /r(T )T .

The result then follows for T = ∞.

He argues against discounting earnings instead of
dividends and quotes the advice an old farmer gave
his son (p. 58):

A cow for her milk,
A hen for her eggs,
And a stock, by heck,
For her dividends.

His book contains the derivation of the simple
formula for the present value of a perpetually
and constantly growing stream of income, P0 =
D1/(r − g ), where r is the constant annualized
riskless discount rate and g the constant annualized
growth rate in dividends.

Here is a proof. Define a = D1/r and x = g/r . Then, P0 =
a(1+ x +1+ x2 + . . . ). Multiplying both sides by x, we have
P0x = a(x+x2+x3+. . . ). Subtracting this from the previous
expression for P0, P0(1 − x) = a. Substituting back for a and
x, P0(1 − (g/r)) = D1/r . Therefore, P0 = D1/(r − g ).
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Williams actually writes this formula in the form
P0 = D0x/(1 − x) where x ≡ g/r (p. 88, Eq. 17a)
and notes that finite stock prices require g < r . This
is commonly and mistakenly called the “Gordon
growth formula” after its restatement by Myron J.
Gordon (1920–) and Eli Shapiro in 1956. Gordon
and Shapiro popularized the formula by rewriting
it as k = (D1/P0) + g , where k equals r under
certainty, but under uncertainty could loosely be
interpreted as the expected return to stock. Breaking
apart this expected return into two components,
the dividend yield and growth, translated William’s
formula into a language that popularized it amongst
investment professionals. For example, in the early
1960s, although the dividend yield of U.S. Steel
was higher than IBM’s, IBM could have a higher k
and P/E ratio because its prospects for growth were
so spectacular.

Following in the footsteps of de Moivre (1725)
and Halley (1761), Williams also develops a very
extensive analysis of a variety of generalizations; for
example, for a constant growth rate over n years,
followed by dividends that exponentially level off
toward a limiting amount that is twice the dividend
in the nth year (p. 94, Eq. 27a):

P0 = (D1/rn){[(gn − rn)/(g − r)]
+ [(2gr − r − 1)/(r − 1)(gr − 1)]}

4 Conclusion

We have seen that the concept of present value
has had a long and illustrious history with con-
tributions by famous mathematicians, scientists,
and economists. In the course of this development,
we have highlighted two Great Moments: Johan
de Witt’s publication of Value of Life Annuities in
Proportion to Redeemable Annuities in 1671 and
Irving Fisher’s publication in 1930 of The Theory
of Interest. By 1938, the refinement of the concept
of present value was far from over. Other Great

Moments were to follow. Work on present value in
the 1950s focused on the use of substitute criteria
such as the internal return of an investment. Then,
in the 1960s and thereafter, present value calcula-
tions under uncertain cash flows were generalized
to include the effects of economy-wide risk aver-
sion. In the 1970s, serious work began on extending
present value to cash flows from derivatives. The
1980s saw extensions to the effect of real options
on present value and the effects of uncertainty on
the term structure of interest rates. Tracing these
developments, which are no doubt better known
than those we have discussed here, will have to await
another opportunity.

Notes

1 This recent and innovative book has been of invaluable
assistance in my construction of the early history of present
value, and I wish to thank Nils Hakansson for bringing it
to my attention.

References

de Witt, J. (1671). Value of Life Annuities in Proportion to
Redeemable Annuities, published in Dutch. Translated from
Dutch into English in Hendricks, F. (1852). “Contribu-
tions of the History of Insurance and the Theory of Life
Contingencies.” Assurance Magazine 2, 232–249.

de Moivre, A. (1725). Treatise of Annuities on Lives. Reprinted
as an appendix to de Moivre’sThe Doctrine of Chances, 1967.

Halley, E. (1761). “Of Compound Interest,” in Henry
Sherwin, Sherwin’s Mathematical Tables, published posthu-
mously after Halley’s death in 1742. London: W. and J.
Mount, T. Page and Son.

Rae, J. (1834). Statement of Some New Principles on the Subject
of Political Economy, Exposing the Fallacies of the System of
Free Trade, and Some Other Doctrines Maintained in “The
Wealth of Nations.” Boston: Hilliard Gray & Co., 1834.

Fisher, I. (1906). The Nature of Income and Capital (Macmil-
lan 1906, reprinted by New York: Augustus M. Kelley,
1965).

Fisher, I. (1907). The Rate of Interest: Its Nature, Determination
and Relation to Economic Phenomena. New York: Macmillan,
1907.

FIRST QUARTER 2003 JOURNAL OF INVESTMENT MANAGEMENTNot for Distribution



54 MARK RUBINSTEIN

Fisher, I. (1930). The Theory of Interest: As Determined by
Impatience to Spend Income and Opportunity to Invest It.
New York: Macmillan. Reprinted, New York: Augustus M.
Kelley, 1955.

Williams, J. B. (1938). The Theory of Investment Value.
Cambridge, MA: Harvard University Press, 1938.
Reprinted, Burlington, VT: Fraser Publishing, 1997.

Dean, J. (1951). Capital Budgeting. New York: Columbia
University Press.

Gordon, M. J. and Shapiro, E. (1956). “Capital Equipment
Analysis: The Required Rate of Profit.” Management Science
3, 102–110.

Faulhaber, G. R. and Baumol, W. J. (1988). “Economists
as Innovators: Practical Products of Theoretical Research.”
Journal of Economic Literature 26, 577–600.

Markowitz, H. (1991). “Foundations of Portfolio Theory.”
Les Prix Nobel 1990. Nobel Foundation, p. 292.

Poitras, G. (2000). The Early History of Financial Economics:
1478–1776: From Commercial Arithmetic to Life Annu-
ities and Joint Stocks. Cheltenham, UK: Edward Elgar,
2000.

JOURNAL OF INVESTMENT MANAGEMENT FIRST QUARTER 2003
Not for Distribution




