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NON-PARAMETRIC ANALYSIS OF RATING TRANSITION
AND DEFAULT DATA

Peter Fledeliusa, David Landob,∗ and Jens Perch Nielsena

We demonstrate the use of non-parametric intensity estimation—including construction
of pointwise confidence sets—for analyzing rating transition data. We find that transition
intensities away from the class studied here for illustration strongly depend on the direction
of the previous move but that this dependence vanishes after 2–3 years.

1 Introduction

The key purpose of rating systems is to provide a
simple classification of default risk of bond issuers,
counterparties, borrowers, etc. A desirable feature
of a rating system is of course that it is successful
in ordering firms so that default rates are higher
for lower rated firms. However, this ordering of
credit risk is not sufficient for the role which rat-
ings are bound to play in the future. A rating
system will be put to use for risk management pur-
poses and the transition probabilities and default
probabilities associated with different ratings will
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have concrete implications for internal capital allo-
cation decisions and for solvency requirements put
forth by regulators. The accuracy of these deci-
sions and requirements depends critically on a solid
understanding of the statistical properties of the
rating systems employed.

It is widely documented that the evolution of ratings
displays different types of non-Markovian behavior.
Not only do there seem to be cyclical components
but there is also evidence that the time spent in a
given state and the direction from which the cur-
rent rating was reached affects the distribution of
the next rating move. Even if this is consistent with
stated objectives of the rating agencies (as discussed
below), it is still of interest to quantify these effects
since they improve our understanding of the rat-
ing process and of the forecasts one may wish to
associate with ratings.
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72 PETER FLEDELIUS ET AL.

In this paper, we use non-parametric techniques
to document the dependence of transition intensi-
ties on duration and previous state. This exercise
serves two key purposes: first, we show that these
effects can be more clearly demonstrated in a
non-parametric setting where the specific modeling
assumptions are few. For example, we find that the
effect, the effect of whether the previous move was
a downgrade or an upgrade vanishes after about 30
months since the last move but that it is significant
up to that point in time. We also consider stratifi-
cation of firms in a particular rating class according
to the way in which the current rating class was
reached, reinforcing the results reached, for exam-
ple, in Lando and Skødeberg (2002). Again, we are
able to quantify how long the effect persists. To do
this requires a notion of significance and we base this
on the calculation of pointwise confidence intervals
by a bootstrap method, which we explain in the
paper.

The second purpose is to point more generally to the
non-parametric techniques as a fast way of reveal-
ing whether there is any hope of finding a certain
property of default rates or transition probabilities
in the data, how to possibly parameterize this prop-
erty in a parametric statistical model and even to
test whether certain effects found in the data are
significant using a non-parametric confidence set
procedure. We illustrate all this from beginning
to end keeping our focus on a single rating class
and jointly modeling the effects of the previous
rating move, duration in the current rating and
calendar time.

While the technique is used to examine only a few
central issues in the rating literature, it is clear
that the methods can be extended to other areas
of focus. For example, the question of whether
transitions depend on economic conditions, key
accounting variables for the individual firms and
other covariates may also be addressed. Whatever
the purpose, the non-parametric techniques used

in this paper combined with the smoothing have
two main advantages. First, whenever we formu-
late hypotheses related to several covariates, there is
a serious thinning of the data material. Consider,
for example, what happens if we study downward
transitions from a rating class as a function of, say,
calendar time t and duration since last transition x.
In this case, we have not only limited our atten-
tion to a particular rating class. For every transition
that occurs, we also have a set of covariates in two
dimensions (calendar time and time in state) and
we wish to say something about the dependence of
the transition intensities on this pair of covariates.
This inevitably leads to a “thinness” of data. The
smoothing techniques help transform what may
seem as very erratic behavior into a recognizable
systematic behavior in the data. In this way, even
if we have been ambitious in separating out the
data into many categories and to a dependence of
more than one covariate, we are still able to detect
patterns in the data—or to conclude that certain
patterns are probably not in the data. The pictures
we obtain can be much more informative than a
parametric test. Second, if we detect patterns in
the data, we may often be interested in building
parametric models. With more dimensions in the
data, tractability and our ability to interpret the
estimators require some sort of additive or multi-
plicative structure to be present in these parametric
models. The methods employed in this paper allow
one not only to propose more suitable paramet-
ric families for the one-dimensional hazards. They
also help detect additive or multiplicative structures
in the data using a technique known as marginal
integration.

In essence, marginal integration gives us non-
parametric estimators for the marginal (one-
dimensional) hazard functions based on a joint
multivariate hazard estimation. The idea is to
first estimate the joint hazard and then marginally
integrate. If an additive or multiplicative struc-
ture is present, this integration gives the marginal
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intensities and—very importantly—these estima-
tors of one-dimensional hazards are not subject
to problems with confounding factors. To explain
what we mean by this, consider a case where there
are two business cycle regimes, one “bad” with a
high downgrade intensity from a particular state and
one “good” with a low intensity. Assume that we are
primarily interested in measuring the effect on the
downgrade intensity of duration, i.e. time spent in
a state. If the sample of firms with short duration
consists mainly of firms observed in the bad period
and the sample of firms with long duration con-
sists mainly of firms observed in the good period,
then a one-dimensional analysis of the downgrade
intensity as a function of duration may show lower
intensities for long duration even if this effect is
not present in the data. The effect shows up simply
as a consequence of the composition of the sample
and is really due to a business cycle effect. In our
analysis, this problem is avoided by modeling the
intensity as a function of calendar time and dura-
tion and then finding the contribution of duration
to the intensity through marginal integration.

The main technical aspect of the paper will be the
smoothing technique itself. For the reader inter-
ested in pursuing the statistical methods in more
depth, we comment briefly on the related literature
from statistics. Throughout this study we use the
so-called “local constant” two-dimensional inten-
sity estimator developed by Fusaro et al. (1993)
and Nielsen and Linton (1995). This local con-
stant estimator can be viewed as the natural ana-
logue to the traditional Nadaraya–Watson estimator
known from non-linear regression as a local con-
stant estimator; see Fan and Gijbels (1996). We
could have decided to use the so-called “local lin-
ear” two-dimensional intensity estimator as defined
in Nielsen (1998). This would have paralleled
the development in regression, where local linear
regression is widely used, primarily due to its con-
venient properties around boundaries; see Fan and
Gijbels (1996). However, our primary focus is an

introduction of these novel non-parametric tech-
niques to credit rating data. We have, therefore,
decided to stick to the most intuitive procedures
and avoid any unnecessary complications.

Rating systems have become increasingly important
for credit risk management in financial institutions.
They serve not only as a tool for internal risk man-
agement but are also bound to play an important
role in the Basel II proposals for formulating capital
adequacy requirements for banks. Partly as a conse-
quence of this, there is a growing literature on the
analysis of rating transitions. To our knowledge, the
first literature to analyze non-Markovian behavior
and “rating drift” are Altman and Kao (1992a–c)
and Lucas and Lonski (1992). Carty (1997) also
examines various measures of drift. The definitions
of drift vary, but typically involve looking at pro-
portions of downgrades to upgrades either within a
class or across classes.

It is important to be precise about the deviations
from Markov assumptions. It is perfectly consistent
with Markovian behavior, of course, to have a larger
probability of downgrade than upgrade from a par-
ticular class. In this paper we are not concerned
with this notion of “drift.” Rather, we are interested
in measuring whether the direction of a previous
rating move influences the current transition inten-
sity. We are also interested in measuring the effect
of time spent in a state on transition intensities.
Note that variations in the intensity as a function
of time spent in a state could still be consistent
with time-nonhomogeneous Markov chains, but
the marginal integration technique allows us to filter
out such effects related to calendar time (or busi-
ness cycles) and show non-Markov behavior. The
non-parametric modeling of calendar time is similar
to Lando and Skødeberg (2002), where a semi-
parametric multiplicative intensity model, with a
time-varying “base line intensity,” is used to analyze
duration effects and effects of previous rating moves.
There, the analysis finds strong effects, particularly
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for downgrade intensities. This paper can be seen
as providing data analysis which, ideally, should
precede a semi-parametric or parametric modeling
effort. The graphs displayed in this paper allows
one to visually inspect which functional forms for
intensities as functions of covariates are reasonable
and whether a multiplicative structure is justified.
Another example of hazard regressions is given in
Kavvathas (2000) which also examines, among a
host of other issues, non-Markovian behavior.

The extent to which ratings depend on busi-
ness cycle variables is analyzed in for example
Kavvathas (2000), Nickell et al. (2000) and Bangia
et al. (2002). Nickell et al. (2000) use an ordered
probit analysis of rating transitions to investigate
sector and business cycle effects. The same tech-
nique was used in Blume et al. (1998) to investigate
whether rating practices had changed during the
1990s. Their analysis indicates that ratings have
become more “conservative” in the sense of being
inclined to assign a lower rating. In this paper,
we do not model these phenomena using a para-
metric specification but changes due to business
cycle effects as well as to policy changes are cap-
tured through the intensity component depending
on calendar time.

The non-parametric techniques shown here allow
us to get a more detailed view on some of the
mechanisms that may underlie the non-Markovian
behavior. One simple explanation is of course that
the state space of ratings is really too small, and that
if we add information about rating outlooks and
even watchlists, this brings the system much closer
to being Markovian; see Hamilton and Cantor
(2004). In Löffler (2003, 2004) various stylized
facts or stated objectives about the behavior of
ratings are examined through models for rating
behavior. There are two effects that we look more
closely at in this paper. First, in Cantor (2001) the
attempt of Moody’s to rate “through the cycle” is
supported by the taking a rating action “only when

it is unlikely to be reversed within a relatively short
period of time:” We will refer to this as “rever-
sal aversion.” Second, avoidance of downgrades by
multiple notches could lead to a policy by which a
firm having experienced a rapid decline is assigned
a rapid sequence of one notch downgrades. Our
results for the rating class Baa1 examined here (and
for three other classes as well, which are not shown
here) support the reversal aversion, whereas there
is some support for the sequential downgrading.
We will return to this point below.

A type of occurrence exposure analysis similar to
ours is performed in Sobehart and Stein (2000)
but our methods differ in two important respects.
First, in Sobehart and Stein (2000) the covariates
are ordered into quantiles. However, for default pre-
diction models and for the use in credit risk pricing
models, we need the intensity function specified
directly in terms of the levels of the covariates. Obvi-
ously, the changing environment of the economy
changes the composition of firms and hence a com-
pany can change the level of a financial ratio without
changing the quantile or vice versa. Furthermore,
there is a big difference between smoothing over
the levels themselves and over the quantiles. When
smoothing based on quantiles, we have little con-
trol over the bandwidth in the sense that members of
neighboring quantiles may be very distant in terms
of levels of financial ratios.

Second, the intensity smoothing techniques we
used are formulated directly within a counting pro-
cess framework for the analysis of survival or event
history data. Hence, the statistical properties of our
estimators are much more well understood than
those of a “classical” regression smoother applied
to the intensity graphs. As in Sobehart and Stein
(2000) we also consider the use of marginal inte-
gration in the search for adequate ways of modeling
joint dependence of several covariates, i.e. whether
several covariates have additive or multiplicative
effects.
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An outline of our paper is as follows: Section 2
describes our data which are based on Moody’s rat-
ings of US corporate bond issuers over a 15 year
period. Section 3 describes our basic model setup
with special focus on the smoothed intensities. We
describe the basic technique in which we smooth
occurrence and exposure counts separately before
forming their ratio to obtain intensity estimates.
Section 4 describes the procedure of marginal inte-
gration by which we obtain one-dimensional hazard
rate estimators from our two-dimensional estima-
tors. Section 5 explains the process for building
confidence sets. Section 6 discusses our main empir-
ical findings and Section 7 discusses the choice of
additive and multiplicative intensity models and
why we should prefer a multiplicative model to an
additive model. Section 8 concludes.

2 Data and outline of methodology

Our data are complete rating histories from Moody’s
for US corporate issuers and we base our results
in this study on data from the period after the
introduction in April 1982 of refined rating classes.

The data contain the exact dates of transitions, but
for the purpose of our smoothing techniques we
discretize them into 30 day periods. There is lit-
tle loss of important information using this grid
instead of the exact dates, since the bandwidths we
will use for smoothing cover a much wider interval.
We study the transition intensity as a function of
chronological time and duration in current class. In
order to establish a duration, we allow for a run-in
time of 50 periods starting April 26, 1982, so the
study actually starts on June 4, 1986. At this date
we can assign each issuer a duration in the current
state which is between 1 and 50 periods. The obser-
vation period of transitions covers the time from
June 4, 1986 to January 9, 2002 which gives us
190 periods of 30 days. As described below, we will
be splitting the data further according to whether

the previous rating change was an upgrade, a down-
grade, or there has been no previous rating change
recorded.

The fundamental quantity we model in this paper is
an intensity α of a particular event which depends
on time and some other covariate x. The event may
be a single type of event (such as “default”) or it may
be an aggregation of several types of events (such as
an “upgrade”). If we denote the next occurrence of
the event as τ , the intensity provides a local expres-
sion for the probability of the event in the sense
that the conditional probability Px,t given that an
event can happen at time t (if we consider upgrades,
then the particular firm under consideration is actu-
ally observed at time t ) and that the covariate is
around x. Heuristically, we have

Px,t (τ ∈ (t , t + �t )) = α(t , x)�t + o(�t )

A more formal definition of α is based on counting
process theory and the concept of stochastic inten-
sities, see Andersen et al. (1993) and Nielsen and
Linton (1995). For the purpose of this paper the
definition above is sufficient.

We are interested in considering duration effects,
and while it is posible to see some effect on the
bivariate graphs, we will study mainly the effects
in one dimension. The procedure we use is the
following:

• Obtain a non-parametric estimator for the
bivariate intensity by smoothing exposures and
occurrences separately.

• Construct univariate intensity estimators through
“marginal integration”—a technique described
below.

• Obtain pointwise confidence sets for the uni-
variate intensities by bootstrapping the bivariate
estimator and for each simulation integrating
marginally.
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We will now describe each procedure in turn and
at each step illustrate the technique graphically on
a particular rating class.

3 Estimating transition intensities
in two dimensions

Our first goal is to estimate the bivariate function α.
We can obtain a preliminary estimator for the inten-
sity α(t , x) for a given time t and duration x as
follows: Assume that the event we are interested in
is “downgrade.” First, count the total number of
firms E (t , x) whose covariates were in a small inter-
val around x and t . Among these firms count the
number O(t , x) of firms which were downgraded.
A natural estimator for the intensity is then the
occurrence/exposure ratio

α̃(t , x) = O(t , x)

E (t , x)

This analysis is performed on a ‘grid’ of values
of x and t .

Even if our original data set is large, we are left
with many “cells” in our grid with no occurrences,
or, even worse, with no exposures. This is because
we have a two-dimensional set of covariates, cal-
endar time and duration, and because we further
stratify the data according to the direction of the
previous rating move. Whereas most previous stud-
ies such as Blume et al. (1998) and Nickell et al.
(2000) analyze the old system with eight rating
classes, we look at the rating classes with modi-
fiers as well. This decreases exposure, but actually
increases occurrences since many moves take place
within the finer categories. All in all this leaves us
with many cells in our gird with no information.
The purpose of smoothing is to compensate for
this thinness by using information from “neighbor”
cells in the grid. Smoothing implicitly assumes that
the underlying intensity varies smoothly with the
covariates, but makes no other assumptions on the

functional form. While non-parametric intensity
techniques have been widely accepted in actuar-
ial science and biostatistics for years—see Nielsen
(1998) and Andersen et al. (1993) for further
literature—these methods are still not used much
in finance.

We can compute the raw occurrence exposure ratios
as above for every considered combination of x and t
in our grid and subsequently smooth the inten-
sity function using a two-dimensional smoothing
procedure. This would correspond to the inter-
nal type of regression estimators; see Jones et al.
(1994). However, the external intensity estimator
used in this paper applies smoothing to occurrence
and exposure separately. The main reason is that
there is evidence from the one-dimensional case that
the “external” type of estimator is more robust to
volatile expsure patterns than the “internal” estima-
tor, see Nielsen andTanggaard (2001) who compare
the “internal” estimator of Ramlau-Hansen (1983)
with the external type similar to the one used in this
paper. Since we do experience volatile exposure pat-
terns, the external smoothing approach described
above, therefore, seems appropriate for our study.1

The exact smoothing procedure adapted to our data
is defined as follows: We have a grid of N = 50
points in the x-direction and T = 190 points in
the t -direction. We compute the smoothed two-
dimensional intensity estimator as the ratio

α̂(t , x) = Ōt ,x

Ēt ,x
(1)

where the numerator and denominator, the
smoothed versions of the “raw” occurrences and
exposures, are defined as

Ōt ,x =
N∑

x1=1

T∑
t1=1

Kb1(x − x1) × Kb2(t − t1)Ot ,x

Ēt ,x =
N∑

x1=1

T∑
t1=1

Kb1(x − x1) × Kb2(t − t1)Et ,x

JOURNAL OF INVESTMENT MANAGEMENT SECOND QUARTER 2004
Not for Distribution



NON-PARAMETRIC ANALYSIS OF RATING TRANSITION AND DEFAULT DATA 77

where we have used the so-called Epanechnikov
kernel functions

Kb1(x − x1) = 0.75 × I{|x−x1|<b1}

×
{

1 − |x − x1|2
b1

}

Kb2(t − t1) = 0.75 × I{|t−t1|<b2}

×
{

1 − |t − t1|2
b2

}

The Epanechnikov kernel function adds more
weight to observations close to the point of inter-
est than, for example, a uniform kernel, and less or
no weight to points far from the point of interest.
The bandwidths essentially determine how far away
from a grid point (t , x) the occurrences and expo-
sures in other grid points should affect the intensity
estimates at (t , x). In this paper, we choose the
grid size and select the bandwidths b1, b2 by visual
inspection, trying to increase the bandwidth if the
graphs appeared too ragged, and to decrease it if
there were signs of oversmoothing. We used a (com-
mon) bandwidth of b1 = b2 = 25. This allowed us
to smooth out most local changes and capture the
long term trends in data.2

It is illustrative to go through an example of a ker-
nel smoothing step by step. Consider as throughout
this paper the class Baa1. In Figure 1 we see a graph-
ical representation of the total number of exposures
of firms in our data set as a function of time and
duration. We show both the raw counts and the
smoothed version of these counts. Figure 2 shows
downgrade activity among the same firms and for
the same grid definition as for the exposures. Again,
both the raw counts and the smoothed versions are
displayed. We see very erratic patterns for the raw
counts which are hard to interpret. Naturally, for
the downgrade activity, there are many zeros, since
for a small handful of firms that typically occupy a
particular grid point, a transition is rare.

Raw Exposure

Smoothed Exposure

Figure 1 A graphical illustration of the “exposure”
matrix E (t , x), i.e. the number of firms “exposed” to
making a transition as a function of time and dura-
tion, and its smoothed version. The rating class is
Baa1. The exposures are divided into “buckets” cov-
ering 30 day periods in both duration and calendar
time. Hence, an exposure of n at a given grid point
(t , x) tells us that at the beginning of a 30 day period
starting at date t there were n firms which had been
in the state between 30(x − 1) and 30x days. Firms
which leave the class are distributed between their
old exposure class and their new exposure class.

From the smoothed exposure matrix and the
smoothed occurrence matrix we are in a position
to obtain a bivariate intensity estimate for down-
grades. The result is shown in Figure 3. Note that
this technique maintains the impression of contin-
uous data. In most other studies with sparse data,
one has to group data to obtain reasonable statisti-
cal results. We do not have to subgroup data in a
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Raw Downgrades

Smoothed Downgrades

Figure 2 A graphical illustration of the raw occur-
rence matrix and its smoothed version for the event
downgrade from Baa1 as a function of time and
duration. The definitions are the same as in Figure 1.

Downgrade Intensity

Figure 3 The smoothed downgrade intensity as a
function of time and duration obtained by dividing
the smoothed downgrade matrix by the smoothed
exposure matrix. The rating category is Baa1.

fixed number of groups when we use the smoothing
technique described above.

4 One-dimensional hazards and marginal
integration

The two-dimensional intensity estimator is a good
starting point for our analysis. However, we will
often prefer a simpler structure where we can inter-
pret the marginal effect of each explanatory variable.
We are primarily interested in the marginal effect of
duration (time since last transition), but to make
sure we can trust our conclusions we also take
into account the effect of different calendar times.
Let α(t , x) be the two-dimensional true intensity.
Consider the following models:

α(t , x) = α1(t ) × α2(x) × c−1

α(t , x) = α1(t ) + α2(x) − c

The first model is a multiplicative model. The sec-
ond model is additive. In both models we can
estimate α1(t ) and α2(x) by marginal integration
(see Linton and Nielsen (1995) for the simple
regression analogue and Linton et al. (2003) for
a mathematical analysis of the more complicated
intensity estimators considered in this paper). For
our data set, the estimators can be written as

α̂1(t ) = 1

N

N∑
x=1

α̂(t , x)

α̂2(x) = 1

T

T∑
t=1

α̂(t , x)

ĉ = 1

T × N

∑
x,t

α̂(t , x)

Note that estimators are the same in the mul-
tiplicative and the additive model. So, we add
more structure to the model by using marginal
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Figure 4 The marginally integrated upgrade and
downgrade intensities as a function of duration in
current state (top graph) and calendar time (bottom
graph). The rating class is Baa1 and we consider here
only the firms which are downgraded into this class.

integration, and we obtain more directly inter-
pretable estimators. Figure 4 shows the marginally
integrated downgrade intensity with respect to
duration and calendar time, respectively, obtained
from the smoothed downgrade intensity presented
in Figure 3. It is interesting to note the strong cycli-
cal behavior of the downgrade intensity component
depending on calendar time, whereas the duration
effect is very stable, at least for our base case Baa1.
The fact that the cyclical behavior is so pronounced
is a strong reason to specify a two-dimensional mode
before studying the effects of duration. However,
as we will see below, we need to be careful in

interpreting the graph, since we will see that the
Baa1 rated firms actually display a significant het-
erogeneity with respect to the previous rating move,
which needs to be accounted for.

5 Confidence intervals

Our particular implementation of the bootstrap
method is based on the following four steps.

• From the observed occurrence Ot ,x and exposure
Et ,x we calculate the estimator α̂(t , x) of α(t , x)
using the techniques from Section 3.

• We then simulate n new sets of occurrences. Each
observation point in the occurrence matrix is
simulated as follows:

Ok,∗
t ,x = Bin(Et ,x , α̂(t , x)) − Et ,x × α̂(t , x) + Ot ,x

where the first two terms give us the difference
between the simulated and the expected number
of transitions, whereas the last term corrects the
overall level of the simulated occurrence matrix.

• Thirdly, for each new simulated occurrence
matrix Ok,∗

t ,x a new estimator α̂k,∗(t , x) is calcu-
lated based on this new occurrence matrix and
the original exposure Et ,x . We store the α̂k,∗(t , x),
k = 1, . . . , 1000. For a given duration x and year
t , all α̂k,∗(t , x) are ordered as

α̂[1],∗(t , x), . . . , α̂[1000],∗(t , x)

• The upper 97.5% and lower 2.5% pointwise
confidence interval can now be calculated as
α̂[975],∗(t , x) and α̂[25],∗(t , x).

It is possible to construct confidence intervals for
both the two-dimensional estimator itself and for
smooth functionals of it. Fledelius et al. (2004)
provide a general framework for bootstrapping
pointwise confidence intervals and give a heuris-
tic argument for why bootstrapping works. In this
paper, we only construct confidence intervals for
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our marginally integrated intensity estimator, for
which the asymptotic theory was established in
Linton et al. (2003).

6 Transitions: dependence on previous
move and duration

We now use the procedure outlined above to inves-
tigate some key hypotheses on rating behavior. Our
main concern is the influence of previous rating
moves on the downgrade and upgrade intensity
from the current state. While the stratification
according to previous move is clearly important in
itself, the duration effect adds an interesting per-
spective because it allows us to study for how long
the stratification remains important. We also show
the marginally integrated upgrade and downgrade
intensities over calendar time and finally show that
the multiplicative model lying behind this marginal
integration seems to describe data well.

While it is possible, in principle, to investigate
the issues for all rating classes, we have decided to
focus on one class, Baa1, for the graphs presented
here. This class has a fairly large number of obser-
vations. When too few observations are present,
we must use very large bandwidths and we, there-
fore, obtain “flat” intensity estimates. The other
classes we investigated were A1, Baa2, and Ba1, but
showing graphs for these also would be excessive.

We began by stratifying the exposures according
to the direction of the previous rating move. This
means that the the exposure matrix E (t , x) defined
above for each rating category is divided into three
groups: those whose previous move was an upgrade,
those whose previous move was a downgrade, and
those for which there is no information, typically
because the current rating class is the first recorded.

In Figure 5 we see the result for the rating category
Baa1. The pattern displayed here is typical of the
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Figure 5 Downgrade and upgrade intensities from
Baa1 stratified according to direction of previous
move with no information on previous move as a
separate category.

classes we investigated. The potentially significant
effect we are searching for is in the classification
between previous upgrade and previous downgrade.
When the event is upgrade, a previous downgrade
and no information on previous move have similar
intensities, and when the event is ‘downgrade’, a
previous upgrade and no information are similar.
We found this to be true for the other categories
as well.

We therefore focus on the difference in the esti-
mated intensities depending on whether the previ-
ous move was an upgrade or a downgrade. Our goal
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Figure 6 Downgrade and upgrade intensities with
confidence bounds from Baa1 as a function of
duration, stratified by previous move.

is to check whether and for which durations there
are significant differences. To analyze this ‘rating
drift’ issue, we present intensity estimates as a func-
tion of duration in a state with confidence bounds.
Figure 6 shows the downgrade and upgrade from
intensities from Baa1, respectively, as a function
of how long the company has been in class Baa1
and stratified according to the previous move. The
intensities are shown with bootstrapped pointwise
confidence intervals.

Clearly, the most pronounced effect is seen for
downgrades from Baa1, where for most durations

there is a significantly higher intensity of down-
grades for the firms which were downgraded into
Baa1 than for those that were upgraded into Baa1.
The downgrade intensity for companies that were
downgraded into Baa1 is fairly constant for the
first 25–30 periods; after that we see a decrease in
the level. The downgrade intensity for companies
upgraded into Baa1 starts out at low values, and
we see an increase in intensity with length of stay.
If a company is upgraded into Baa1, we see very
little downgrade activity in the first 10–20 peri-
ods. The gap between the intensities disappears
after 25–30 periods. In summary, the previous rat-
ing change direction gives extra information for
companies which have stayed in Baa1 for less than
30 periods of 30 days, i.e. somewhere between 2
and 3 years.

The upgrade intensities display a similar pattern as
for downgrades in the sense that the information
of previous transition contains important informa-
tion for around 25–30 periods. This is evident from
the low upgrade intensity in the first 25 periods
for companies downgraded into Baa1. Both cases
seem to support the observation that rating reversals
are rare in Moody’s rating history. They also show
that the memory is approximately 25–30 periods,
equivalent to 2–2.5 years. We also investigated
other classes and the conclusions were similar. It
is clear that the largest effect of stratification is for
the cases where the event considered is a down-
grade. Here, the intensity is significantly lower
when the previous move was an upgrade. In most
cases, but not for Ba1, the downgrade intensity is
relatively constant as a function of duration in the
state when the previous move was a downgrade.
This is evidence that the difference in intensity
is not so much due to firms which are given a
sequence of downgrades “one at a time” but rather
a “reversal aversion effect” that a firm is unlikely
to be upgraded following a downgrade. The effect
seems to vanish after between 20 and 30 periods in
a state.
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We also find that the upgrade intensities seem to
be higher when the previous move was an upgrade
than when it was a downgrade. The effect is not as
pronounced as for downgrades, but it is still signifi-
cant. Again, the history seems more consistent with
rating reversal aversion than with rating momen-
tum in that the intensity for upgrade conditionally
on the previous move being an upgrade is relatively
constant across duration.

7 Multiplicative intensities

In our study, we have noticed a clear intensity
variation with calendar time and we, therefore,
cannot investigate the effect of duration through
a one-dimensional analysis. We have to con-
sider the two-dimensional intensity case. However,
the one-dimensional estimates which we obtain
through marginal integration from the smoothed
two-dimensional estimates can only be interpreted
properly if the intensity model can reasonably be
thought of as multiplicative or additive, as explained
in Section 4. We, therefore, implement a visual
inspection of, respectively, the multiplicative and
the additive intensity model and compute a mea-
sure for squared error to see which one fits the
data best. The visual inspection consists of com-
paring the two-dimensional estimator obtained by
adding or multiplying the two marginally integrated
intensities with the smoothed but unrestricted two-
dimensional estimator. In Figure 7 we show the
smoothed but unrestricted bivariate downgrade
intensity for firms which were downgraded into
Baa1. If we perform a marginal integration as
explained in Section 4 to obtain the downgrade
intensity as a function of duration and of calendar
time, we obtain the results shown in Figure 8 (where
we also show the marginally integrated upgrade
intensities for comparison). From the marginally
integrated intensities we can now show the bivariate
intensity, assuming a multiplicative and an addi-
tive structure, respectively. The resulting bivariate

Downgrade Intensity

Figure 7 The bivariate intensity estimator for
the class Baa1 when the previous move was a
downgrade.
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Figure 8 The marginally integrated upgrade and
downgrade intensities as a function of duration in
current state (top graph) and calendar time (bottom
graph). The rating class is Baa1 and we consider here
only the firms which are downgraded into this class.
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Multiplicative Downgrade Intensity

Additive Downgrade Intensity

Figure 9 The bivariate intensity estimator for firms
downgraded into class Baa1 assuming a multiplica-
tive intensity structure (top graph) and an additive
intensity structure (bottom graph). The multi-
plicative (additive) structure defines the intensity
as the product (sum) of the marginally integrated
intensities.

intensities are shown in Figure 9. A visual inspection
confirms that the multiplicative intensity is closer
to the unrestricted intensity estimate. Certainly,
the difference between these graphs and the unre-
stricted estimators in Figure 7 does not lead us to
reject the assumption of a multiplicative structure,
even if the multiplicative structure is smoother and
does not capture all the features of the unrestricted
estimator.

We would prefer the multiplicative structure to the
additive structure also based on a computation of
squared errors and for reasons of interpretation. The
multiplicative model is

ˆ̂α(t , x) = α̂1(t ) × α̂2(x) × ĉ−1

Let ˜̃α(t , x) denote the corresponding intensity esti-
mator in the additive model. We calculated the
sums of squared errors (SSE) for ˆ̂α(t , x) and ˜̃α(t , x)
defined as

∑
x,t

[
α̂(t , x) − ˆ̂α(t , x)

]2

and ∑
x,t

[
α̂(t , x) − ˜̃α(t , x)

]2

The event considered was downgrade from Baa1
and to avoid the problems with heterogeneity
within this class, we chose only the firms that
were downgraded into Baa1. We found an SSE
in the multiplicative model of 0.048 and an SSE
in the additive model of 0.103. The SSE calcula-
tion, therefore, supports selecting the multiplicative
model for downgrades.

8 Concluding remarks

This paper applies non-parametric smoothing tech-
niques to the study of rating transitions in Moody’s
corporate default database. The techniques give a
powerful way of visualizing data. We illustrate their
use with a detailed study of duration dependence
of transitions and of the direction of a previous rat-
ing move. The patterns we see for Baa1 (and for
the other classes we investigated but do not dis-
play here) are consistent with a policy of “rating
reversal aversion” in which the ratings through a
period of between 2 and 3 years show a reduced
tendency of moving in a direction opposite to the
direction in which they were moved into the current
state. It is also consistent with the stated objectives

SECOND QUARTER 2004 JOURNAL OF INVESTMENT MANAGEMENTNot for Distribution



84 PETER FLEDELIUS ET AL.

of Moody’s, as formulated in Cantor (2001), of
changing ratings only when a reversal is unlikely to
take place in the foreseeable future. This pattern is
significant in both directions, i.e. downgrades are
less likely for firms which were upgraded into the
state than for firms downgraded into the state, and
the pattern is reversed when studying upgrades. The
effect of stratification is, however, most pronounced
for downgrade activity.

One might also attribute this observed pattern as an
effect due to multi-notch downgrades being carried
out one notch at a time for some firms despite the
fact that they have in reality experienced a credit
quality decline. If this were the pattern, we should
see significant duration effects on downgrade activ-
ity as a function of duration but we found a clear
pattern of this only for the rating class Baa2. We
show clear calendar time effects in our data set, as
demonstrated for example in Figure 8, and this is
consistent with, for example, Nickell et al. (2000).
We condition out those effects through the marginal
integration procedure. This procedure works well
under either an additive or multiplicative intensity
structure and we find support for the treatment of
the model as a multiplicative model, consistent with
the semi-parametric Cox regression studied, for
example, in Lando and Skødeberg (2002). Around
the completion of this work, the study of Hamilton
and Cantor (2004) emerged, which as earlier men-
tioned studies the role of outlooks and watchlists.
This also lends support to the non-Markovian pat-
tern found here but the precise role of the outlooks
in our setting awaits further analysis.
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Notes

1 To our knowledge, the asymptotic theory is also only fully
understood in the external case.

2 We could have chosen to work with quantitative criteria
for bandwidth selection. There is an extensive literature on
bandwidth selection with the simple kernel density esti-
mator as the primary object of interest. In our intensity
case, the analogue to the most widely used bandwidth selec-
tion procedure, cross-validation, was introduced in Nielsen
and Linton (1995) and Fledelius et al. (2004). Automatic
bandwidth selection turns out to be extremely complicated
in practice and no one method has yet obtained universal
acceptance, see Wand and Jones (1995). For example, the
simplest and most widely used method, cross-validation, is
well known to be a bad bandwidth selector for many data
sets; see Wand and Jones (1995).
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