
JOIM
www.joim.com

JOURNAL OF INVESTMENT MANAGEMENT, Vol. 9, No. 4, (2010), pp. 73–84

© JOIM 2010

S U R V E Y S A N D C R O S S O V E R S

“Survey and Crossovers” provides surveys of the literature in investment management or short papers
exemplifying advances in finance that arise from the confluence with other fields. This section acknowl-
edges current trends in, and the cross-disciplinary nature of the investment management business, while
directing the reader to interesting and important recent work.

IMPLEMENTING OPTION PRICING MODELS
USING PYTHON AND CYTHON

Sanjiv R. Dasa and Brian Grangerb

In this article we propose a new approach for implementing option pricing models in finance.
Financial engineers typically prototype such models in an interactive language (such as Matlab)
and then use a compiled language such as C/C++ for production systems. Code is therefore written
twice. In this article we show that the Python programming language and the Cython compiler
allows prototyping in a Matlab-like manner, followed by direct generation of optimized C code
with very minor code modifications. The approach is able to call upon powerful scientific libraries,
uses only open source tools, and is free of any licensing costs. We provide examples where Cython
speeds up a prototype version by over 500 times. These performance gains in conjunction with vast
savings in programmer time make the approach very promising.

1 Introduction

Computing in financial engineering needs to be fast
in two critical ways. First, the software development
process must be fast for human developers; pro-
grams must be easy and time efficient to write and
maintain. Second, the programs themselves must
be fast when they are run. Traditionally, to meet
both of these requirements, at least two versions of
a program have to be developed and maintained; a

aSanta Clara University, Santa Clara, CA 95053, USA.
bCalifornia Polytechnic State University, San Luis Obispo,
CA 93407, USA.

prototype in a high-level interactive language like
Matlab, R, Excel, etc., and a high-performance
production version in a compiled language like C,
C++, or Fortran. This duplication of effort slows
the deployment of new algorithms and creates ongo-
ing software maintenance problems, not to mention
added development costs.

In this paper we describe an approach to tech-
nical software development that enables a single
version of a program to be written that is both
easy to develop and maintain and achieves high lev-
els of performance. This approach uses the Python
programming language (van Rossum et al., 2010)

FOURTH QUARTER 2010 73

Not for Distribution

74 SANJIV R. DAS AND BRIAN GRANGER

and the Cython compiler (Behnel et al., 2010) to
generate optimized C code whose performance is
comparable to that of handwritten C code. The
modifications needed to the original source code of
the program are minimal, basically amounting to a
small number of static type declarations. We illus-
trate the approach in a finance context by showing
how two option pricing models, the binomial tree
and Black–Scholes models, can be implemented
in Python and then optimized using the Cython
compiler and language extensions.

1.1 Python

The Python programming language1 has, in the last
decade, become one of the premier languages for
scientific and technical computing.2 Python is an
interpreted, dynamically-typed programming lan-
guage that supports a wide range of programming
styles including object-oriented, functional, and
procedural. It is an open source language that was
started in the early 1990s by Guido van Rossum
(now at Google) and continues to be developed
by a large team of developers worldwide. Python
is currently one of the most popular programming
languages (TIOBE, 2010) and is used extensively by
the DOE, DOD, NASA, academic researchers, and
companies like Google, Industrial Light and Magic,
and Rackspace (Python Success Stories, 2010).

Why is Python such an effective tool for scientific
and technical computing? Our central argument
in this paper is that Python combines the ease-of-
use, interactive workflow, and integrated libraries of
environments such as Matlab, Mathematica, R, and
Excel with the performance of compiled languages
such as C, C++, and Fortran. More specifically,
Python has the following attributes that are relevant
in a financial engineering context:

(1) Python has a friendly syntax that is easy to
read and write. In this respect, Python stands
in sharp contrast to other popular languages
such as Java, C++, and C#, whose syntax is

heavy, complex, subtle, and places a significant
cognitive load on its users.

(2) Python can be used in an interactive and
exploratory manner. Like Matlab, Excel, R,
etc., Python offers an interactive shell/environ-
ment, where commands are typed at an inter-
active prompt and executed immediately. This
type of workflow has become extremely popular
among technical users as it is well matched to
the exploratory nature of research, prototyping
and data analysis. In this paper we will illus-
trate this aspect of Python through the usage
of IPython,3 which is an enhanced interactive
Python shell (Perez, 2007).

(3) Python is easy to integrate with other lan-
guages. Statistical packages like R may call
Python, and vice versa. The same holds for
compiled languages like C, C++, and Fortran.
There are a large number of tools in the Python
ecosystem that ease this process, such as f2py,4

SWIG,5 Boost.Python,6 ctypes,7 and Cython.8

The result is that Python is an excellent glue
language for integrating codes in a wide variety
of underlying languages. Furthermore, there
are .NET (IronPython9) and Java (Jython10)
implementations of the Python VM, which
make it possible to use Python with .NET and
Java libraries.

(4) Python can be made very fast. Because Python
is interpreted and dynamically typed, it is
not as fast natively as statically typed lan-
guages. However, because it is so easy to call
compiled languages from Python, it is straight-
forward to develop performance critical code in
C/C++/Fortran and then call it from Python.
Furthermore, as we will describe in this paper,
the Cython project provides a compiler and a set
of language extensions that allow optimized C
code to be autogenerated directly from Python
code.

(5) There is a vast set of open source Python
packages that provide all the tools needed in
technical computing. The NumPy package11

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2010

Not for Distribution

IMPLEMENTING OPTION PRICING MODELS USING PYTHON AND CYTHON 75

contains a powerful N -dimensional array
object along with functions for linear algebra,
Fourier analysis, random numbers, etc. The
SciPy package12 adds additional algorithms on
top of NumPy that include optimization, inte-
gration, statistics, sparse matrices, etc. For
plotting and visualization, Matplotlib13 and
Chaco14 provide publication quality 2D plot-
ting and Mayavi15 provides VTK-based 3D
visualization capabilities.

(6) Python has language features that allow large-
scale object-oriented applications to be built
easily. These features include mature object-
oriented capabilities and module/package
namespaces. This offers a huge advantage over
other interactive environments such as Mat-
lab, Octave, or Excel, where it is quite difficult
to build large-scale applications that are well
encapsulated and have reusable components
with well-defined interfaces. These features are
critical in financial engineering, where applica-
tions can be large and complex.

(7) Python is easy to install and deploy. Python and
most of the packages described in this paper are
available through the standard Linux package
managers and double-clickable Windows/Mac
OS X installers. In addition, there are a num-
ber of commercial and open source “distribu-
tions” that package all of the software described
here, along with its documentation in an easy-
to-use installer. These distributions include
Enthought Python Distribution16 (or EPD),
PyIMSL Studio,17 Sage,18 and PythonXY.19

1.2 Cython

Behnel (2010)20 is an open source project that pro-
vides a compiler and set of language extensions
to Python. The name “Cython” is rooted in the
idea that Cython is “C” + “Python”. The fact
that Python itself is an interpreted and dynami-
cally typed language means that the Python virtual
machine is unable to perform the compile time

optimizations of a statically-typed language like
C. While this makes Python easy-to-use and flex-
ible, it limits the raw performance Python can
achieve. However, in technical computing, you
often do know the types of variables beforehand,
so it should be possible, at least in principle, to
perform type-specific optimizations.

As an illustration, consider what happens when you
add two Python objects. The Python compiler will
generate bytecode instructions that will carry out
that operation for any two Python objects, regard-
less of their type.21 These bytecode instructions can
be viewed using Python’s dis module as follows:

In [1]: def add(a,b):
...: return a+b

In [2]: dis.dis(f)
2 0 LOAD_FAST 0 (a)

3 LOAD_FAST 1 (b)
6 BINARY_ADD
7 RETURN_VALUE

Each bytecode instruction, such as BINARY_ADD,
can involve many low-level CPU instructions,
which makes Python much slower than languages
like C. On the other hand, if you want to add
two double precision floats, a compiler should
be able to reduce this operation to a small num-
ber of native CPU instructions. This is exactly
what Cython brings to the Python language. As a
language Cython is a superset of Python that intro-
duces a few carefully chosen language extensions to
enable static typing. Most important is the cdef
keyword, which is used to declare the C datatypes
of variables. In the above example the static type
declarations would be:

cdef f(double a, double b):
return a+b

From this simple modification, the Cython com-
piler is able to eliminate the costly Python bytecode
instructions and generate optimized C code that

FOURTH QUARTER 2010 JOURNAL OF INVESTMENT MANAGEMENT

Not for Distribution

76 SANJIV R. DAS AND BRIAN GRANGER

a C compiler can express efficiently using few
native CPU instructions. The magic of Cython is
that these types declarations are entirely optional;
a program can freely mix statically typed cdef
variables with dynamically typed Python objects.22

The Cython compiler automatically generates the
code to convert between Python and C datatypes
when needed.

The result is that by simply adding static type dec-
larations to an existing Python program using cdef
you enable the Cython compiler to generate high-
performance C code from your Python code. The
resulting code remains callable from Python, but
has performance near to that of handwritten C,
C++, or Fortran. A side effect of this is that you can
also call arbitrary external C/C++/Fortran libraries
from your Cython source code, because of all of the
type conversions can be handled by Cython.

The rest of this article proceeds as follows. Section 2
implements a binomial tree option pricing model
using Python and Cython, starting from a plain
Python version and then incrementally adding the
Cython-specific optimizations. Section 3 repeats
this process for the Black–Scholes model. We
briefly mention parallelization options that exist for
Python in Section 4 before our concluding remarks
in Section 5.

2 Pricing options on binomial trees
using Python

In order to demonstrate the power of Python and
Cython we use a financial pricing example that
is simple yet numerically intensive (a closed-form
solution does not provide much insight). In this first
example, we implement the binomial tree option

pricing model for both American and European
options, based on the original work of Cox et al.
(1979). Our implementation is based on the frame-
work of Jarrow and Rudd (1983). This model is
both widely known by students in finance and
numerically intensive, requiring backward recur-
sion on a tree.

2.1 Plain Python

We begin by implementing the binomial tree model
in plain Python (no C/Cython code) to set a per-
formance baseline. While the performance of this
version will be relatively poor, the code is easy to
understand and can be used in an interactive and
exploratory manner. For multidimensional arrays,
we use the NumPy package, which is the standard
Python array library for technical computing.

Listing 1 shows the straightforward Python code
for this version, which is saved in a file called
“binomial.py”. This file (known as a “module” in
Python) defines a single function, jarrow_rudd,
that implements the algorithm and takes parame-
ters of the option (initial stock price, strike price,
the volatility, etc.) as arguments.

In order to use this module in an interactive manner
we use IPython, which is an enhanced interactive
Python shell with features such as tab completion,
a built-in help system, easy access to the system
shell and file system, interactive plotting support
and a special “magic command” syntax that makes
interactive work more pleasant (see the %timeit
magic command used below). Here is an exam-
ple of an IPython session, in which we start up
IPython, import the jarrow_rudd function and
then use it to price a call option:

$ ipython
Enthought Python Distribution -- http://code.enthought.com

Python 2.5.2 |EPD Py25 4.1.30101| (r252:60911, Dec 19 2008, 15:28:32)
Type "copyright", "credits" or "license" for more information.

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2010

Not for Distribution

IMPLEMENTING OPTION PRICING MODELS USING PYTHON AND CYTHON 77

Listing 1 binomial.py

FOURTH QUARTER 2010 JOURNAL OF INVESTMENT MANAGEMENT

Not for Distribution

78 SANJIV R. DAS AND BRIAN GRANGER

IPython 0.9.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ‘object’. ?object also works, ?? prints more.

In [1]: from binomial import jarrow_rudd

In [2]: jarrow_rudd(100.0, 100.0, 1.0, 0.3, 0.03, 1, False, 100)
13.2969231342

And if we price the put option, we obtain:

In [3]: jarrow_rudd(100.0, 100.0, 1.0,
0.3, 0.03, -1, False, 100)
10.341476489

Finally, pricing the American put option should
result in a slightly higher value than for the Euro-
pean put:

In [4]: jarrow_rudd(100.0, 100.0, 1.0,
0.3, 0.03, -1, True, 100)
10.6276823809

As mentioned above, IPython has a set of “magic
commands” that provide additional capabilities that
are useful in interactive workflows. These magic
commands are prefixed with the % symbol and have
a syntax that mimics that of the system shell. Here
we use the %timeit magic command to time the
execution of the jarrow_rudd function for the
American put option we priced above:

In [5]: %timeit jarrow_rudd(100.0,
100.0, 1.0, 0.3, 0.03, -1, True, 100)
10 loops, best of 3: 90 ms per loop

This time of 90 milliseconds per call is our perfor-
mance baseline for this algorithm. We will use the
%timeitmagic command subsequently to measure
the speed up of more efficient implementations of
the algorithm relative to this baseline.

2.2 Compiling the module using Cython

Next, we show how the plain Python version of
“binomial.py” can be compiled into a C extension
module using Cython to improve its performance.
Here are the steps involved in the process:

(1) Create a Cython source code file with a .pyx
extension.23 The Cython language is a superset
of Python so these files can contain arbi-
trary Python code as well as Cython specific
extensions to the language. These language
extensions include C/C++ static type decla-
rations and calls to external C/C++/Fortran
libraries.

(2) Use the Cython compiler to compile the .pyx
source code into a Python C extension module.
In this phase, Cython uses the static type dec-
larations to generate highly optimized C code.
This C code is callable from Python once it is
compiled by a C compiler and Cython takes
care of converting datatypes between C and
Python as needed.

(3) Import the C extension module and use it just
like you would the plain Python version.

The benefit of this approach is that you can start
with the slow, plain Python version of a code,
and then incrementally improve its performance
using the Cython language extensions. Through-
out the process, the result remains usable inter-
actively from Python and IPython. At the end

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2010

Not for Distribution

IMPLEMENTING OPTION PRICING MODELS USING PYTHON AND CYTHON 79

of the day, you have a single high-performance
implementation that is both the prototype and
production version. We now illustrate this incre-
mental approach for our binomial tree pricing
example.

2.2.1 Compiling with no C type declarations
or C library calls

In this section we compile our binomial tree exam-
ple using Cython, but without using any of the
Cython language extensions, such as C type decla-
rations or C library calls. To do this, we copy our
original and unmodified Python program “bino-
mial.py” into a new file called “binomial2.pyx” and
compile it as is using Cython.

We fire up IPython and import the compiled C
extension module. Note that before doing this
we must import and install the pyximport mod-
ule, which comes with Cython and enables .pyx
files to be compiled on-the-fly during the import
process:

In [1]: import pyximport

In [2]: pyximport.install()

In [3]: from binomial2 import
jarrow_rudd

To see if there is any performance improvement
after compilation, we again use IPython’s %timeit
magic command to time the pricing of the Ameri-
can put option:

In [4]: %timeit jarrow_rudd(100.0,
100.0, 1.0, 0.3, 0.03, -1, True, 100)
10 loops, best of 3: 82.6 ms per loop

Note that the speed up is relatively small. The
function took 82.6 milliseconds in Cython versus
90 milliseconds for our plain Python version. This is

only a 9% speed up from the original run time. The
main purpose of this step is to show how Cython can
take a plain Python program and compile it to C.
Unless we exploit the Cython language extensions,
however, the performance gains will be minimal.
We turn to this next.

2.2.2 Compiling with C type declarations and
C library calls

Fortunately, the changes required to utilize the
Cython language extensions in our original program
to exploit the benefits of C compilation are simple
to make. The resulting optimized version of the pro-
gram is saved in a file called “binomial3.pyx” and
is shown in Listing 2. There are two optimizations
that we have made that allow Cython to generate
optimized C code.

First, we use the cdef Cython keyword to declare
static C types for our variables. When those variables
represent basic C datatypes (double, int), simple
statements suffice, such as:

cdef double h, u, d, drift, q
cdef int i, j, m

For the multidimensional arrays representing the
stock and option price trees, we use Cython’s
built-in support for NumPy arrays. By using cdef
and telling Cython the number of dimensions
(ndim=2) and the underlying C datatype of the
array (np.double_t),

cdef np.ndarray[np.double_t, ndim=2]
stkval = np.zeros((n+1,n+1))

Cython can generate fast C code that accesses
the underlying memory buffer of the NumPy
array using fast pointer arithmetic. The result
is that Python style array element access such
as stkval[i,j] becomes as fast as handwritten
C code.

FOURTH QUARTER 2010 JOURNAL OF INVESTMENT MANAGEMENT

Not for Distribution

80 SANJIV R. DAS AND BRIAN GRANGER

Listing 2 binomial3.pyx

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2010

Not for Distribution

IMPLEMENTING OPTION PRICING MODELS USING PYTHON AND CYTHON 81

Second, we replace calls to Python’s built-in math
module with optimized ones from the C standard
library. This is done by simply telling Cython the
name of the corresponding header file (“math.h”)
and listing the statically typed function declarations
therein:24

cdef extern from "math.h" nogil:
double exp(double)
double sqrt(double)
double pow(double, double)
double fmax(double, double)

From that point on, these C library functions can
be used like any other Python function. With these
simple Cython language extensions, Cython is able
to generate C code that is nearly identical to what
would be written by an experienced human devel-
oper in C. However, the big difference is that the
resulting code is still callable from Python. Run-
ning the program inside IPython gives the following
results:

In [2]: import pyximport, numpy

In [3]: pyximport.install
(setup_args=dict(include_dirs=
[numpy.get_include()]))

In [4]: from binomial3 import
jarrow_rudd

In [5]: jarrow_rudd(100.0, 100.0,
1.0, 0.3, 0.03, -1, True, 100)
Out[5]: 10.627682380924412

In [6]: %timeit jarrow_rudd(100.0,
100.0, 1.0, 0.3, 0.03, -1, True, 100)
1000 loops, best of 3: 579 us per loop

We now see that the run time has dropped to 579
microseconds, i.e., 0.579 milliseconds, compared
to 90 milliseconds in original Python. This is a vast

improvement (a 99% speed up), i.e., the program
now runs 155 times as fast. Furthermore, this per-
formance is comparable to that of handwritten pure
C code.25 Note that the actual run times will dif-
fer, depending on which machine the program is
run on. These examples were run on an iMac with
a 2-GHz Intel Core Duo processor and 1.5 GB
SDRAM, and should run much faster on more
recent hardware.

3 Black–Scholes pricing

A common question that arises is whether using
the Cython language extensions to Python to gen-
erate optimized C code is always beneficial. It is
possible that the benefit depends on the type of
algorithm. To assess this question and for com-
pleteness, we provide here the Black–Scholes model
(Black and Scholes, 1973), programmed in Python
and in Cython. The example also shows the use
of the SciPy statistics package (scipy.stats) to
compute the cumulative normal distribution func-
tion. The initial plain Python version (in the file
“blackscholes.py”) is shown in Listing 3.

Running the program in Python gives the
following:

In [1]: from blackscholes import
black_scholes

In [2]: black_scholes(100.0, 100.0,
1.0, 0.3, 0.03, 0.0, -1)
Out[2]: 10.327861752731728

In [3]: %timeit black_scholes(100.0,
100.0, 1.0, 0.3, 0.03, 0.0, -1)
1000 loops, best of 3: 409 us per loop

Note that the program is running in microseconds
now. We now rework the same program in Cython
using static C type declarations and C library calls.
The program code (“blackscholes2.pyx”) is shown
in Listing 4.

FOURTH QUARTER 2010 JOURNAL OF INVESTMENT MANAGEMENT

Not for Distribution

82 SANJIV R. DAS AND BRIAN GRANGER

Listing 3 blackscholes.py

Listing 4 blackscholes2.pyx

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2010

Not for Distribution

IMPLEMENTING OPTION PRICING MODELS USING PYTHON AND CYTHON 83

The program run gives the same values of course,
but its performance has improved greatly:

In [1]: import pyximport

In [2]: pyximport.install()

In [3]: from blackscholes2 import
black_scholes

In [4]: black_scholes(100.0, 100.0,
1.0, 0.3, 0.03, 0.0, -1)
Out[4]: 10.327861752731728

In [5]: %timeit black_scholes(100.0,
100.0, 1.0, 0.3, 0.03, 0.0, -1)
1000000 loops, best of 3: 716 ns
per loop

The run time is now down to 716 nanoseconds,
representing a speedup of 571 times over the plain
Python version! Again, like the binomial tree model
above, there is a huge advantage to using the
Cython-optimized version. One may wonder why
the speedup of the Black–Scholes algorithm was so
much greater than the binomial tree model. While
we have not confirmed this, we expect that the
binomial tree algorithm is closer to being memory
bandwidth limited on the hardware used, so there
is less room for improvement.

4 Parallelization

While Cython brings the performance of Python
near to that of C/C++/Fortran, at times, even higher
performance is needed. Typically, that means par-
allelizing a program to take advantage of various
parallel hardware architectures, such as multicore
CPUs, GPU, clusters, and supercomputers. While
it is outside the scope of this paper to cover par-
allelization techniques and libraries for Python in
depth, it is useful to summarize some of the

more important options that exist in the Python
ecosystem.

For low-level message passing, there are Python
bindings to MPI25 (mpi4py26), ZeroMQ27

(PyZMQ28) and AMQP.29 For parallel libraries
with higher level interfaces, there is Python’s
built-in multiprocessing library,30 IPython’s paral-
lel computing framework (IPython, 2007), Disco31

and Parallel Python.32 Apache’s Hadoop project,33

which implements Google’s MapReduce model
of parallelism, allows map and reduce functions
to be written in Python. The PyCUDA34 and
PyOpenCL35 projects make it quite easy to use
GPUs for numerical computing through CUDA
and OpenCL. Finally, for parallel computing
in the cloud, there is PiCloud,36 which is a
commercial package that enables Python code to
run in parallel on Amazon EC2. These tools and
libraries allow Python programs to achieve even
higher levels of performance and scalability and
are making Python a compelling language for
high-performance computing.

5 Conclusion

Traditionally, ease-of-development and high-
performance have been at odds with each other in
technical computing. With the Python program-
ming language, this dichotomy is easing. We have
described how Cython allows programs written in
Python to be quickly optimized to achieve high
performance without losing the easy prototyping
and interactive workflow that technical users find
so productive.

There are many applications in finance that require
high performance, such as pricing on trees,
Monte Carlo simulations, high-frequency trad-
ing, risk management, and portfolio optimiza-
tion. All these will be able to take advantage of
the approach described here. In addition to the
performance improvement, this approach elimi-
nates the need to develop and maintain separate

FOURTH QUARTER 2010 JOURNAL OF INVESTMENT MANAGEMENT

Not for Distribution

84 SANJIV R. DAS AND BRIAN GRANGER

Matlab/Mathematica/Excel (for prototyping) and
C/C++/Fortran versions (for production) of algo-
rithms.

Finally, because Python, Cython and the other soft-
ware libraries described here are all completely open
source,37 they are free to use and have source codes
that can be modified, extended, and bundled in any
way needed.

Notes
1 http://www.python.org
2 See Computing in Science and Engineering 9 (2007) for an

overview of Python in scientific computing.
3 http://ipython.scipy.org
4 http://www.scipy.org/F2py
5 http://www.swig.org/
6 http://www.boost.org/
7 http://docs.python.org/library/ctypes.html
8 http://www.cython.org/
9 http://ironpython.codeplex.com/

10 http://www.jython.org/
11 http://numpy.scipy.org/
12 http://www.scipy.org/
13 http://matplotlib.sourceforge.net/
14 http://code.enthought.com/chaco/
15 http://code.enthought.com/projects/mayavi/
16 http://www.enthought.com/
17 http://www.vni.com/products/imsl/pyimslstudio/
18 http://www.sagemath.org/
19 http://www.pythonxy.com/
20 http://www.cython.org
21 This includes the possibility of adding two objects that

can’t be added in which case a runtime exception will be
raised.

22 This capability is similar to the new dynamic language
runtime features of .NET.

23 The “.pyx” file extension name comes from Cython’s
predecessor, called Pyrex.

24 The “nogil” keyword tells Cython to release Python’s global
interpreter lock, and is important if the resulting code is
to be parallelized using threads.

25 At this point, the only overhead is the conversion of
Python datatypes to and from C datatypes entering and
leaving the function.

26 http://www.mcs.anl.gov/research/projects/mpi/
27 http://code.google.com/p/mpi4py/
28 http://www.zeromq.org/
29 http://github.com/zeromq/pyzmq
30 http://www.amqp.org
31 http://docs.python.org/library/multiprocessing.html
32 http://discoproject.org/
33 http://www.parallelpython.com/
34 http://hadoop.apache.org/
35 http://mathema.tician.de/software/pycuda
36 http://mathema.tician.de/software/pyopencl
37 http://www.picloud.com/
38 Most of the projects described have very liberal open source

licenses such as the BSD or MIT licenses.

References

Behnel, S., Bradshaw, R., Seljebotn, D. S., Ewing, G.
et al. (2010). “Cython: C=Extensions for Python.”
http://www.cython.org.

Black, F. and Scholes, M. (1973). “The Pricing of Options
and Corporate Liabilities.” Journal of Political Economy 81,
637–654.

Cox, J., Ross, S. and Rubinstein, M. (1979). “Option Pricing:
A Simplified Approach.” Journal of Financial Economics 7,
229–263.

Jarrow, R. and Rudd, A. (1983). Option Pricing, Homewood,
Illinois: Irwin.

Perez, F. and Granger, B. E. (2007). “IPython: A System
for Interactive Scientific Computing.” Computing in Science
and Engineering 9, 21–29.

Python Success Stories (2010). http://www.python.org/about/
success/.

TIOBE Programming Community Index (August 2010),
http://www.tiobe.com/.

van Rossum, G. et al. (2010). “The Python Programming
Language.” http://www.python.org.

Keywords: Python; Cython; option pricing; perfor-
mance computing

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2010

Not for Distribution

